Performance Comparison of CART And KNN Algorithms for Analyzing Early Predictions of Mental Health
DOI:
10.47709/cnahpc.v6i3.4232Keywords:
Early Prediction Analysis, Mental Health, CART Algorithm, CART Algorithm and KNN AlgorithmDimension Badge Record
Abstract
Currently, mental health is an unresolved mental health problem both at the national and international levels. Mental health disorders are conditions where a person has difficulty in adjusting to the conditions around them. Mental Health is an important aspect of overall health. Efforts to maintain and improve it can help a person achieve better well-being in everyday life. This research aims to conduct Early Prediction Analysis related to mental health problems experienced by students by measuring the accuracy level of the analysis. This research was conducted using the CART (Classification and Regression Trees) and KNN (K-Nearest Neighbor) algorithms with a set of Mental Health Datasets consisting of 11 attributes and 101 data. The data is processed using the Weka Application and the accuracy results of each algorithm are obtained, amounting to 94.0594% for the CART Algorithm and 91.0891% for the KNN Algorithm. From this achievement, it can be concluded that the performance of the CART and KNN algorithms falls into the Excellent Classification category. Judging from the accuracy obtained, the CART algorithm has a higher accuracy value than the KNN algorithm, so the CART algorithm has a high performance for analyzing early prediction of mental health of students who do not take steps in seeking mental health support.
Downloads
Abstract viewed = 86 times
References
Al Aziz, A. A. (2020). Hubungan Antara Intensitas Penggunaan Media Sosial dan Tingkat Depresi pada Mahasiswa. Acta Psychologia, 2(2), 92–107. https://doi.org/10.21831/ap.v2i2.35100
Azania, D., & Naan. (2021). Humanistika: Jurnal Keislaman. Humanistika: Jurnal Keislaman, 7(1), 26–45.
Binjori, A. S. (2020). Implementasi Data Mining Untuk Pengembangan Sistem Rekomendasi Pemilihan SMK Dengan Menggunakan Algoritma Cart. KLIK: Kajian Ilmiah Informatika Dan Komputer, 1(2), 42–48. http://djournals.com/klik/article/view/46
Informasi, D. A. N. T., Muallif, I. S., Budiman, H., & Ransi, N. (2023). Penerapan Data Mining untuk Prediksi Pergerakan Harga Saham Menggunakan Algoritma K-Nearest Neighbor. 1(1), 297–306.
Kurnia, D. D. (2021). Sistem Pakar Untuk Mendiagnosa Gangguan Kesehatan Mental Menggunakan Algoritma Genetika. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(3), 1171–1187. https://doi.org/10.35957/jatisi.v8i3.1079
Kurniadi, R. P., Saedudin, R. R., & Widartha, V. P. (2021). Perbandingan Akurasi Algoritma K-Nearest Neighbor Dan Logistic Regression Untuk Klasifikasi Penyakit Diabetes. E-Proceeding of Engineering, 8(5), 9757–9764.
Mardiani, E., Rahmansyah, N., Ningsih, S., & ... (2023). Komparasi Metode Knn, Naive Bayes, Decision Tree, Ensemble, Linear Regression Terhadap Analisis Performa Pelajar Sma. Innovative: Journal Of …, 3(2), 13880–13892. http://j-innovative.org/index.php/Innovative/article/view/1949%0Ahttp://j-innovative.org/index.php/Innovative/article/download/1949/1468
Masyarakat, J. P., Putri, A., Maria, C., Syahrias, L., & Mustika, I. (2023). Penyuluhan Mental Health. 6(1), 154–161.
Melani, F., & Sulastri. (2020). Analisis Perbandingan Klasifikasi Algoritma CART dengan Algoritma C 4 . 5 Pada Kasus Penderita Kanker Payudara. Jurnal TEKNO KOMPAK, 17(1), 171–183.
Prakoso, R. D. Y., Wiriaatmadja, B. S., & Wibowo, F. W. (2020). Sistem Klasifikasi Pada Penyakit Parkinson Dengan Menggunakan Metode K-Nearest Neighbor. Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 2016, 63–68.
Praptikaningtyas, A. A. I., Wahyuni, A. A. S., & Aryani, L. N. A. (2019). Hubungan Tingkat Depresi Pada Remaja Dengan Prestasi Akademis Siswa SMA Negeri 4 Denpasar. Jurnal Medika Udayana, 8(7), 1–5. https://ojs.unud.ac.id/index.php/eum
Pratama, Y., Prayitno, A., Nazrian, D., Aini, N., Rizki, Y., & Rasywir, E. (2022). Klasifikasi Penyakit Gagal Jantung Menggunakan Algoritma K-Nearest Neighbor. Bulletin of Computer Science Research, 3(1), 52–56. https://doi.org/10.47065/bulletincsr.v3i1.203
Radiani, W. A., Ushuluddin, F., Islam, U., & Antasari, N. (2019). KESEHATAN MENTAL MASA KINI DAN PENANGANAN Pendahuluan Setiap hari melalui media informasi baik cetak ataupun elektronik , kekerasan selalu dalam muncul rumah berita tangga , tragedi pelecehan seksual , prostitusi , dan beragam bentuk kejahatan yang lain . 87–113.
Rahma, Y., Prasetiadi, A., & Wibowo, M. (2022). Identification of Mental Ilness From Patient Diseases Using Knn and Levenshtein Distance Algorithm. Jurnal Teknik Informatika (Jutif), 3(5), 1363–1372. https://doi.org/10.20884/1.jutif.2022.3.5.371
Saleh, H., Faisal, M., & Musa, R. I. (2019). Klasifikasi Status Gizi Balita Menggunakan Metode K-Nearest Neighbor. Simtek?: Jurnal Sistem Informasi Dan Teknik Komputer, 4(2), 120–126. https://doi.org/10.51876/simtek.v4i2.60
Santiko, I., & Subarkah, P. (2019). Comparison of Cart and Naive Bayesian Algorithm Performance to Diagnose Diabetes Mellitus. IJIIS: International Journal of Informatics and Information Systems, 2(1), 9–16. https://doi.org/10.47738/ijiis.v2i1.9
Savitri, F. D. (2022). Penerapan Metode Cart Dalam Memprediksi Penjualan Produk Fast Moving Dan Slow Moving. Journal of Informatics, Electrical and Electronics Engineering, 1(4), 119–125. https://djournals.com/jieee
Subarkah, P., Ikhsan, A. N., & Setyanto, A. (2018). The Effect of The Number of Attributes On The Selection of Study Program Using Classification and Regression Trees Algorithms. 2018 3rd International Conference on Information Technology, Information System and Electrical Engineering (ICITISEE), 1–5. https://doi.org/10.1109/ICITISEE.2018.8721030
Sudarsono, B. G., & Lestari, S. P. (2020). Diagnosa Tingkat Depresi Mahasiswa Akhir Terhadap Penelitian Ilmiah Menggunakan Algoritma K-Nearest Neighbor. Jurnal Media Informatika Budidarma, 4(4), 1094–1099. https://doi.org/10.30865/mib.v4i4.2448
Wisnugraha, W. S., Farida, I. N., & ... (2023). Implementasi Algoritma Naïve Bayes Dalam Menentukan Diagnosa Tingkat Depresi Mahasiswa Akhir Terhadap Pengerjaan Skripsi. Prosiding SEMNAS …, 7, 919–928. https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/3517%0Ahttps://proceeding.unpkediri.ac.id/index.php/inotek/article/download/3517/2321
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Eling Sekar Anggraeni, Lulu Amnah Fitriya Maharani, Desi Riyanti, Ranggi Praharaningtyas Aji, Pungkas Subarkah
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.