Investigation of The Increase in Drug Use in Medan City Using The Support Vector Machine (SVM) Method
DOI:
10.47709/cnahpc.v6i3.4137Keywords:
Drugs, Support Vector Machine, Medan CityDimension Badge Record
Abstract
Medan city is currently experiencing a troubling rise in the prevalence of drug abuse, necessitating effective strategies for detection and intervention. This research aims to improve the accuracy of identifying drug users in Medan using the Support Vector Machine (SVM) method. Data for the study were sourced from reputable institutions including the National Narcotics Agency (BNN), North Sumatra Regional Police (Polda Sumut), and the Health Office of Medan City. SVM was employed to analyze these datasets and distinguish between drug users and non-users. The study revealed that SVM achieved an impressive detection accuracy of 98.0%, a notable improvement compared to earlier approaches like Convolutional Neural Networks (CNN), which attained 83.33% accuracy.These findings highlight SVM's effectiveness as a robust tool for accurately identifying drug users. The outcomes of this study are anticipated to aid government entities in crafting targeted policies and strategies to combat drug abuse in Medan. By harnessing SVM technology, law enforcement and healthcare authorities can bolster their capabilities in swiftly and precisely detecting and responding to drug-related issues. This research contributes significantly to advancing methodologies in drug abuse detection, emphasizing SVM's pivotal role in achieving superior detection rates. In conclusion, the application of SVM in this study not only enhances detection accuracy but also underscores its potential as a reliable technology for addressing the growing challenge of drug abuse in urban settings like Medan. Future research could further refine SVM models and explore additional datasets to validate its efficacy in real-world scenarios, thereby strengthening efforts to mitigate the societal impact of drug misuse.
Downloads
Abstract viewed = 92 times
References
Afifudin Muhammad Yunus. (2020). KETERLIBATAN PETUGAS DALAM PEREDARAN NARKOBA DAN PROGRAM PEMBINAAN NARAPIDANA PENGGUNA NARKOBA DI LAPAS. Jurnal Ilmiah Indonesia, 5(11), 1232–1240.
Behzad Yousefipour. (2022). Evaluation of Brain Cortical Connectivity in Drug Abusers Using EEG Data. IEEE Xplore, 161–166. https://doi.org/https://doi.org/10.1109/ICBME57741.2022.10052805
Dakhaz Mustafa Abdullah, Abdulazeez, A. M. (2021). Aplikasi Pembelajaran Mesin berdasarkan SVM Klasifikasi?: Tinjauan. Qubahan Academic Journal, 81–90. https://doi.org/10.48161/Issn.2709-8206
Davuluri, S. K. (2023). Support Vector Machine based Multi-Class Classification for Oriented Instance Selection. IEEE Xplore, 112–117. https://doi.org/https://doi.org/10.1109/ICICT57646.2023.10133966
Garnis Ajeng Pamiela, A. A. (2021). Pembelajaran Mendalam tentang Konsentrasi Studi EEG di Masa Pandemi Garnis. Jurusan Informatika, Fakultas Teknologi Industri, 2.
Haidar, M. H., Raharjo, J., Budiman, G., Telkom, U., Transform, D. W., Machine, S. V., Beta, G., Kata, T. H., & Relaksasi, M. (2021). KLASIFIKASI SINYAL ALFA BETA TERHADAP AKTIVITAS BERPIKIR SESEORANG SAAT MENGERJAKAN TES HAFALAN KATA MENGGUNAKAN METODE SUPPORT VECTOR MACHINE ( SVM ) CLASSIFICATION OF ALPHA BETA SIGNAL ON PERSON THINKING ACTIVITIES WHEN DOING WORD MEMORY TEST USING SUPPORT VECTOR MACHINE ( SVM ). 8(5), 5083–5089.
Hesri Mintawati, D. B. (2021). Bahaya narkoba dan strategi penanggulangannya. Jurnal Pengabdian Kepada Masyarakat Abdi Putra, 1(2), 62–68.
IFAHDA PRATAMA HAPSARI,SH., M. (2019). EFEKTIVITAS PENERAPAN PIDANA MATI TERHADAP TINDAK PIDANA NARKOTIKA DI INDONESIA. Jurnal Universitas Muhammadiyah Gresik, 1, 241–251.
Javad Haddadnia. (2023). Evaluation of Drug Abuse on Brain Function using Power Spectrum Analysis of Electroencephalogram Signals in Methamphetamine, Opioid, Cannabis, and Multi-Drug Abuser Groups. Journal of Biomedical Physics and Engineering, February, 181–192. https://doi.org/10.31661/jbpe.v
Jose Isagani B. Janairo. (2023). Support vector machine in drug design. In Academic Press (Ed.), Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Developmen (pp. 161–179). Elsevier Inc. https://doi.org/https://doi.org/10.1016/B978-0-443-18638-7.00021-9
Sood, M. (2021). UPAYA PENCEGAHAN PEREDARAN NARKOBA DALAM RANGKA MELINDUNGI MASYARAKAT DI KABUPATEN LOMBOK TENGAH NUSA TENGGARA BARAT Muhammad Sood 1* , Lalu Puttrawandi 1 , Khairur Rizki 1. Jurnal Warta Desa, 3(2), 91–96. https://doi.org/10.29303/jwd.v3i2.129
Viswanatha. (2023). Support Vector Machine Implementation to Separate Linear and Non- Linear Dataset. Saudi Journal of Engineering and Technology, 6272, 4–15. https://doi.org/10.36348/sjet.2023.v08i01.002
Xiong, Y. (2020). Detection methamphetamine patients using ERP features. IEEE Xplore. https://doi.org/https://doi.org/10.1109/ICISCE48695.2019.00059
Xuelin Gu. (2022). BCI+VR rehabilitation design of closed-loop motor imagery based on the degree of drug addiction. IEEE Xplore, 19(2), 62–72. https://doi.org/https://doi.org/10.23919/JCC.2022.02.006
Yang Banghua. (2022). Different types of drug abusers prefrontal cortex activation patterns and based on machine-learning classi¯cation. Journal of Innovative Optical Health Sciences, 15(2), 1–10. https://doi.org/10.1142/S1793545822500122
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Yonata Laia, Roman Samosir, Yessy Phalentina br Sagala
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.