ac

The Prediction of Thyroid Cancer Recurrence with the XGBoost Method: The Clinicopathological Feature-Based Approach

Authors

  • Tuti Alawiyah Alawiyah Universitas Bina Sarana Informatika
  • Taufik Wibisono Universitas Bina Sarana Informatika
  • Yani Sri Mulyani Universitas Bina Sarana Informatika

DOI:

10.47709/cnahpc.v6i3.4101

Keywords:

Thyroid Cancer, Xgboost, Clinicopathological Feature

Dimension Badge Record



Abstract

This research aims to develop a thyroid cancer recurrence prediction model using the XGBoost method with a clinicopathological feature-based approach. Thyroid cancer is one of the cancers that have a significant recurrence rate after initial treatment. Therefore, thyroid cancer recurrence prediction is important in determining treatment plans and patient management. In this study, we used a dataset containing 383 records of clinicopathological information on thyroid cancer patients who had undergone treatment. The features include various clinical and pathological parameters that are considered important in recurrence prediction. We used the XGBoost algorithm, which has proven effective in various classification tasks, to build a prediction model. The model evaluation results show good consistency in predicting the thyroid cancer recurrence with an average accuracy value of around 97.74% and an average F1-score value of around 95.94%. The results show that the XGBoost model can provide thyroid cancer recurrence prediction with good accuracy, with the ability to effectively detect both classes (recurrence and non-recurrence). The model is expected to be a valuable tool in supporting clinical decision-making related to the management of thyroid cancer patients.

Downloads

Download data is not yet available.
Google Scholar Cite Analysis
Abstract viewed = 134 times

References

Andriansyah, D.-, & Fridayanthie, E. W. (2023). Optimization of Support Vector Machine and XGBoost Methods Using Feature Selection to Improve Classification Performance. JITE (Journal of Informatics and Telecommunication Engineering), 6(2), 484–493. https://doi.org/10.31289/JITE.V6I2.8373

Bogar, B. D., Lumintang, N., Tandililing, S., & Wariki, W. M. (2024). Korelasi antara Kadar Kalsidiol (25-Oh) dan Rasio Netrofil-Limfosit dengan Keganasan Nodul Tiroid. E-CliniC, 12(2), 205–212. https://doi.org/10.35790/ECL.V12I2.48492

Andinata, B. (n.d.). Kanker Tiroid, Kenali Gejala, Penyebab, dan Cara Pengobatannya! Retrieved June 14, 2024, from https://www.siloamhospitals.com/informasi-siloam/artikel/kanker-tiroid

Dwi Arista, R., Karima, K., Anugrah, M. F., Widyastuti, P., & Triani, E. (2023). Thyroid Cancer?: an Overview of Epidemiology, Risk Factor, and Treatment. Lombok Medical Journal, 2(2), 90–96. https://doi.org/10.29303/LMJ.V2I2.2791

Fachri, P. (2024). Gambaran Klinikopatologi Kanker Tiroid di RSUP Dr. M. Djamil Padang Tahun 2018-2020. http://scholar.unand.ac.id/466745/

Handayani, S. H. S., Handayani, S. H. S., & Purnami, S. W. (2014). Pendekatan Metode Classification and Regression Tree untuk Diagnosis Tingkat Keganasan Kanker pada Pasien Kanker Tiroid. Jurnal Sains Dan Seni ITS, 3(1), D24–D29. https://doi.org/10.12962/j23373520.v3i1.6108

Kurnia, D., Mazdadi, M. I., Kartini, D., Nugroho, R. A., Abadi, F., & Korespondensi, P. (2023). Seleksi Fitur dengan Particle Swarm Optimization pada Klasifikasi Penyakit Parkinson Menggunakan XGBoost. Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(5), 1083–1094. https://doi.org/10.25126/JTIIK.20231057252

Nababan, A. A., Jannah, M., Aulina, M., & Andrian, D. (2023). Prediksi Kualitas Udara Menggunakan Xgboost Dengan Synthetic Minority Oversampling Technique (SMOTE) Berdasarkan Indeks Standar Pencemaran Udara (ISPU). Jurnal Teknik Informatika Kaputama (JTIK), 7(1).

Nugraha, W. (2021). Prediksi Penyakit Jantung Cardiovascular Menggunakan Model Algoritma Klasifikasi. JURNAL SIGMATA, 9(2), 78–84. https://www.kaggle.com/andrewmvd/heart-

Nur, A., Santosa, A., & Siti Komariyah, A. (2023). Karakteristik Kanker Tiroid Di Maluku Utara Tahun 2017-2020. Jurnal Endurance, 8(2), 246–252. https://doi.org/10.22216/JEN.V8I2.2161

Parura, Y., Pontoh, V., & Merung, M. (2016). Pola kanker tiroid periode Juli 2013 - Juni 2016 di RSUP Prof. Dr. R. D Kandou Manado. Jurnal E-Clinic (ECl), 4(2). https://doi.org/10.35790/ECL.V4I2.14475

Ravly Andryan, M., Fajri, M., & Nina Sulistyowati, dan. (2022). Komparasi Kinerja Algoritma Xgboost Dan Algoritma Support Vector Machine (SVM) Untuk Diagnosis Penyakit Kanker Payudara. JIKO (Jurnal Informatika Dan Komputer), 6(1), 1–5. https://doi.org/10.26798/JIKO.V6I1.500

Salsabil, M., Azizah, N. L., & Eviyanti, A. (2024). Implementasi Data Mining Dalam Melakukan Prediksi Penyakit Diabetes Menggunakan Metode Random Forest Dan Xgboost. Jurnal Ilmiah Komputasi, 23(1), 51–58. https://doi.org/10.32409/JIKSTIK.23.1.3507

Siswandi, A., Fitriyani, N., Artini, I., & Monitira, K. (2020). Karakteristik Penderita Kanker Tiroid Di Bagian Bedah Onkologi Di Rumah Sakit Umum Daerah Dr. H. Abdul Moeloek Provinsi Lampung Tahun 2017-2019. Jurnal Medika Malahayati, 4(3), 244–248.

Yulianti, S. E. H., Soesanto, O., & Sukmawaty, Y. (2022). Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit. Journal of Mathematics: Theory and Applications, 4(1), 21–26. https://doi.org/10.31605/JOMTA.V4I1.1792

Downloads

ARTICLE Published HISTORY

Submitted Date: 2024-06-14
Accepted Date: 2024-06-14
Published Date: 2024-07-02

How to Cite

Alawiyah, T. A., Wibisono, T., & Yani Sri Mulyani. (2024). The Prediction of Thyroid Cancer Recurrence with the XGBoost Method: The Clinicopathological Feature-Based Approach. Journal of Computer Networks, Architecture and High Performance Computing, 6(3), 1035-1045. https://doi.org/10.47709/cnahpc.v6i3.4101