Analysis of Public Sentiment Towards The TikTok Application Using The Naive Bayes Algorithm and Support Vector Machine
DOI:
10.47709/cnahpc.v6i2.3990Keywords:
Naïve Bayes, Sentiment Analysis, Support Vector Machine, TikTokDimension Badge Record
Abstract
In the current digital era, social media applications such as TikTok have become an important aspect of people's lives. TikTok allows users to create and share short videos, making it a global phenomenon with millions of active users. However, this application has also been the subject of various responses and opinions from the public. This research aims to classify public sentiment towards the TikTok application based on comments on Playstore using the Naïve Bayes algorithm and Support Vector Machine (SVM). This research method involves collecting comment data from Playstore using scraping techniques, resulting in 5,000 review data. Data pre-processing stages include case folding, tokenization, normalization, stopword removal, stemming, and data labeling using a lexicon. The data that has been processed is then weighted using Term Frequency - Inverse Document Frequency (TF-IDF) before being classified using the Naïve Bayes and SVM algorithms. Algorithm performance evaluation is carried out using the Confusion Matrix to measure accuracy, precision and recall. The research results show that the SVM algorithm has higher accuracy (84%) compared to Naïve Bayes (79%). SVM also shows better precision and recall values in classifying positive and negative sentiment from user reviews. From the results of the tests that have been carried out, the SVM algorithm is more effective than Naïve Bayes in sentiment analysis of the TikTok application. This research provides insight into how public sentiment can be measured and analyzed, and underscores the importance of choosing the right algorithm for data sentiment analysis on social media platforms.
Downloads
Abstract viewed = 247 times
References
Ardiansyah, D., Saepudin, A., Aryanti, R., Fitriani, E., & Royadi. (2023). Analisis Sentimen Review Pada Aplikasi Media Sosial Tiktok Menggunakan Algoritma K-NN dan SVM Berbasis PSO. Jurnal Informatika Kaputama (JIK), 7(2), 233–241.
Fide, S., Suparti, & Sudarno. (2021). Analisis Sentimen Ulasan Aplikasi TikTok di Google Play Menggunakan Metode Support Vector Machine (SVM) dan Asosiasi. Jurnal Gaussian, 10(3), 346–358. Retrieved from https://ejournal3.undip.ac.id/index.php/gaussian/
Hananto, B. K., Pinandito, A., & Kharisma, A. P. (2018). Penerapan Maximum TF-IDF Normalization Terhadap Metode KNN Untuk Klasifikasi Dataset Multiclass Panichella Pada Review Aplikasi Mobile. Jurnal Pengembangan Teknologii Informasi Dan Ilmu Komputer, 2(12), 6812–6823. Retrieved from http://j-ptiik.ub.ac.id
Indriyani, F. A., Fauzi, A., & Faisal, S. (2023). Analisis Sentimen Aplikasi TikTok Menggunakan Algoritma Naive Bayes dan Support Vector Machine. TEKNOSAINS?: Jurnal Sains, Teknologi Dan Informatika, 10(2), 176–184. https://doi.org/10.37373/tekno.v10i2.419
Irfani, F. F., Triyanto, M., Hartanto, A. D., & Kusnawi. (2020). Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine. Jurnal Bisnis, Manajemen Dan Informatika, 16(3), 258–266.
Isnan, M., Elwirehardja, G. N., & Pardamean, B. (2023). Sentiment Analysis for TikTok Review Using VADER Sentiment and SVM Model. Procedia Computer Science, 227, 168–175. https://doi.org/10.1016/j.procs.2023.10.514
Mubaroroh, H. H., Yasin, H., & Rusgiyono, A. (2022). Analisis Sentimen Data Ulasan Aplikasi Ruangguru Pada Situs Google Play Menggunakan Algoritma Naïve Bayes Classifier Dengan Normalisasi Kata Levenshtein Distance. Jurnal Gaussian, 11(2), 248–257. Retrieved from https://ejournal3.undip.ac.id/index.php/gaussian/
Novitasari, I., Kurniawan, T. B., Dewi, D. A., & Misinem. (2022). Analisis Sentimen Masyarakat Terhadap Tweet Ruang Guru Menggunakan Algoritma Naive Bayes Classifier (NBC). Jurnal Mantik, 6(3), 2685–4236.
Pawar, A. B., Jawale, M. A., & Kyatanavar, D. N. (2016). Fundamentals of Sentiment Analysis: Concepts and Methodology. In Studies in Computational Intelligence (Vol. 639, pp. 25–48). Springer Verlag. https://doi.org/10.1007/978-3-319-30319-2_2
Roldós, I. (2020, March 2). Go-to Guide for Text Classification with Machine Learning.
Samsir, Ambiyar, Verawardina, U., Edi, F., & Watrianthos, R. (2021). Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naive Bayes. Jurnal Media Informatika Budidarma, 5(1), 157–163. https://doi.org/10.30865/mib.v5i1.2604
Wenando, F. A., Hayami, R., & Anggrawan, A. J. (2020). Analisis Sentimen Pada Pemerintahan Terpilih Pada Pilpres 2019 di Twitter Menggunakan Algoritman Naive Bayes. Jurnal Teknologi Dan Sistem Informasi, 7(1), 101–106. https://doi.org/10.33330/jurteksi.v7i1.851
Worth, D. (2010). Introduction to Modern Information Retrieval, 3rd Edition. Australian Academic and Research Libraries, 41(4), 305–306. https://doi.org/10.1080/00048623.2010.10721488
Yulita, W., Nugroho, E. D., & Algifari, M. H. (2021). Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes Classifier. JDMSI, 2(2), 1–9.
Zulqornain, J. A., Indriati, & Adikara, P. P. (2021). Analisis Sentimen Tanggapan Masyarakat Aplikasi Tiktok Menggunakan Metode Naïve Bayes dan Categorial Propotional Difference (CPD). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer , 5(7), 2886–2890. Retrieved from http://j-ptiik.ub.ac.id
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Ika Arofatul Hidayah Hidayah, Ririen Kusumawati, Zainal Abidin, M. Imamuddin
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.