ac

Analysis of Public Sentiment Towards The TikTok Application Using The Naive Bayes Algorithm and Support Vector Machine

Authors

  • Ika Arofatul Hidayah Hidayah Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Ririen Kusumawati Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Zainal Abidin Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • M. Imamuddin Universitas Islam Negeri Maulana Malik Ibrahim Malang

DOI:

10.47709/cnahpc.v6i2.3990

Keywords:

Naïve Bayes, Sentiment Analysis, Support Vector Machine, TikTok

Dimension Badge Record



Abstract

In the current digital era, social media applications such as TikTok have become an important aspect of people's lives. TikTok allows users to create and share short videos, making it a global phenomenon with millions of active users. However, this application has also been the subject of various responses and opinions from the public. This research aims to classify public sentiment towards the TikTok application based on comments on Playstore using the Naïve Bayes algorithm and Support Vector Machine (SVM). This research method involves collecting comment data from Playstore using scraping techniques, resulting in 5,000 review data. Data pre-processing stages include case folding, tokenization, normalization, stopword removal, stemming, and data labeling using a lexicon. The data that has been processed is then weighted using Term Frequency - Inverse Document Frequency (TF-IDF) before being classified using the Naïve Bayes and SVM algorithms. Algorithm performance evaluation is carried out using the Confusion Matrix to measure accuracy, precision and recall. The research results show that the SVM algorithm has higher accuracy (84%) compared to Naïve Bayes (79%). SVM also shows better precision and recall values in classifying positive and negative sentiment from user reviews. From the results of the tests that have been carried out, the SVM algorithm is more effective than Naïve Bayes in sentiment analysis of the TikTok application. This research provides insight into how public sentiment can be measured and analyzed, and underscores the importance of choosing the right algorithm for data sentiment analysis on social media platforms.

Downloads

Download data is not yet available.
Google Scholar Cite Analysis
Abstract viewed = 247 times

References

Ardiansyah, D., Saepudin, A., Aryanti, R., Fitriani, E., & Royadi. (2023). Analisis Sentimen Review Pada Aplikasi Media Sosial Tiktok Menggunakan Algoritma K-NN dan SVM Berbasis PSO. Jurnal Informatika Kaputama (JIK), 7(2), 233–241.

Fide, S., Suparti, & Sudarno. (2021). Analisis Sentimen Ulasan Aplikasi TikTok di Google Play Menggunakan Metode Support Vector Machine (SVM) dan Asosiasi. Jurnal Gaussian, 10(3), 346–358. Retrieved from https://ejournal3.undip.ac.id/index.php/gaussian/

Hananto, B. K., Pinandito, A., & Kharisma, A. P. (2018). Penerapan Maximum TF-IDF Normalization Terhadap Metode KNN Untuk Klasifikasi Dataset Multiclass Panichella Pada Review Aplikasi Mobile. Jurnal Pengembangan Teknologii Informasi Dan Ilmu Komputer, 2(12), 6812–6823. Retrieved from http://j-ptiik.ub.ac.id

Indriyani, F. A., Fauzi, A., & Faisal, S. (2023). Analisis Sentimen Aplikasi TikTok Menggunakan Algoritma Naive Bayes dan Support Vector Machine. TEKNOSAINS?: Jurnal Sains, Teknologi Dan Informatika, 10(2), 176–184. https://doi.org/10.37373/tekno.v10i2.419

Irfani, F. F., Triyanto, M., Hartanto, A. D., & Kusnawi. (2020). Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine. Jurnal Bisnis, Manajemen Dan Informatika, 16(3), 258–266.

Isnan, M., Elwirehardja, G. N., & Pardamean, B. (2023). Sentiment Analysis for TikTok Review Using VADER Sentiment and SVM Model. Procedia Computer Science, 227, 168–175. https://doi.org/10.1016/j.procs.2023.10.514

Mubaroroh, H. H., Yasin, H., & Rusgiyono, A. (2022). Analisis Sentimen Data Ulasan Aplikasi Ruangguru Pada Situs Google Play Menggunakan Algoritma Naïve Bayes Classifier Dengan Normalisasi Kata Levenshtein Distance. Jurnal Gaussian, 11(2), 248–257. Retrieved from https://ejournal3.undip.ac.id/index.php/gaussian/

Novitasari, I., Kurniawan, T. B., Dewi, D. A., & Misinem. (2022). Analisis Sentimen Masyarakat Terhadap Tweet Ruang Guru Menggunakan Algoritma Naive Bayes Classifier (NBC). Jurnal Mantik, 6(3), 2685–4236.

Pawar, A. B., Jawale, M. A., & Kyatanavar, D. N. (2016). Fundamentals of Sentiment Analysis: Concepts and Methodology. In Studies in Computational Intelligence (Vol. 639, pp. 25–48). Springer Verlag. https://doi.org/10.1007/978-3-319-30319-2_2

Roldós, I. (2020, March 2). Go-to Guide for Text Classification with Machine Learning.

Samsir, Ambiyar, Verawardina, U., Edi, F., & Watrianthos, R. (2021). Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naive Bayes. Jurnal Media Informatika Budidarma, 5(1), 157–163. https://doi.org/10.30865/mib.v5i1.2604

Wenando, F. A., Hayami, R., & Anggrawan, A. J. (2020). Analisis Sentimen Pada Pemerintahan Terpilih Pada Pilpres 2019 di Twitter Menggunakan Algoritman Naive Bayes. Jurnal Teknologi Dan Sistem Informasi, 7(1), 101–106. https://doi.org/10.33330/jurteksi.v7i1.851

Worth, D. (2010). Introduction to Modern Information Retrieval, 3rd Edition. Australian Academic and Research Libraries, 41(4), 305–306. https://doi.org/10.1080/00048623.2010.10721488

Yulita, W., Nugroho, E. D., & Algifari, M. H. (2021). Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes Classifier. JDMSI, 2(2), 1–9.

Zulqornain, J. A., Indriati, & Adikara, P. P. (2021). Analisis Sentimen Tanggapan Masyarakat Aplikasi Tiktok Menggunakan Metode Naïve Bayes dan Categorial Propotional Difference (CPD). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer , 5(7), 2886–2890. Retrieved from http://j-ptiik.ub.ac.id

Downloads

ARTICLE Published HISTORY

Submitted Date: 2024-06-05
Accepted Date: 2024-06-05
Published Date: 2024-06-05

How to Cite

Hidayah, I. A. H., Ririen Kusumawati, Zainal Abidin, & M. Imamuddin. (2024). Analysis of Public Sentiment Towards The TikTok Application Using The Naive Bayes Algorithm and Support Vector Machine . Journal of Computer Networks, Architecture and High Performance Computing, 6(2), 881-891. https://doi.org/10.47709/cnahpc.v6i2.3990