Implementation of the Naïve Bayes Algorithm in the SMS Spam Filtering System
DOI:
10.47709/cnahpc.v6i2.3875Keywords:
Message Classification System, Naïve Bayes, Spam, SMS Messages, TF-IDFDimension Badge Record
Abstract
In the context of the escalating global spam activity, supported by data from CNN Indonesia in 2021, this research aimed to investigate the root causes and characteristics of this phenomenon. The approach employed in this study involved a series of exploration and classification stages of text messages with the clear objective: to determine whether each message fell into the spam category or not, utilizing the Naïve Bayes method. Additionally, the research aimed to identify the factors influencing the status of text messages, whether they were considered as spam or not. The Naïve Bayes classification method was chosen to facilitate the process of identifying spam-related messages. The dataset used in this research had an 80:20 ratio and was obtained from the Department of Communication and Informatics of Asahan Regency. This data was used to train and test the developed classification model. Data labeling processes were conducted to uncover the factors influencing the status of text messages as spam or non-spam. The research findings indicated that issues related to spam and non-spam messages remained a serious concern. The high accuracy rate, reaching 92%, achieved by the Naïve Bayes method in classifying messages, demonstrated the effectiveness of the method in detecting spam messages.
Downloads
Abstract viewed = 124 times
References
Adila, N., Khasanah, S., & Sutabri, T. (2023). STRATEGI PERANCANGAN SISTEM AMAVIS DAN SPAMASSASSIN PADA SPAM MAIL. Jurnal Sain Dan Teknik, 5(2), 154–166.
Arisona, D. C., Wibowo, G. N. A., Siswanto, & Gunawan. (2023). Klasifikasi Pesan Biasa, Operator, Spam, dan Debt Collector Menggunakan K-Nearest Neighbor. Insypro, 8(2), 1–6.
Aulia, Z. N., Jati, G. K., & Santoso, I. (2023). ANALISIS SENTIMEN TANGGAPANPUBLIC MENGENAI E-TILANG MELALUI MEDIA SOSIAL YOUTUBE MENGGUNAKAN ALGORITMA NAIVE BAYES. Jurnal IKRAITH-INFORMATIKA, 7(2), 150–156.
Batubara, M. Z., & Nasution, M. I. P. (2023). Sistem Informasi Online Pengelolaan Dana Sosial Pada Rumah Yatim Sumatera Utara. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(3), 164–171.
Fachri, B., & Sembiring, R. M. (2020). Pengamanan Data Teks Menggunakan Algoritma DES Berbasis Android. JURNAL MEDIA INFORMATIKA BUDIDARMA, 4(1), 110–116. https://doi.org/10.30865/mib.v4i1.1700
Fitriana, D. N., Setifani, N. A., & Yusuf, A. (2020). PERBANDINGAN ALGORITMA NAÏVE BAYES, SVM, DAN DECISION TREE UNTUK KLASIFIKASI SMS SPAM. JUSIM (Jurnal Sistem Informasi Musirawas), 5(2), 167–174.
Ikhsan, M. (2021). Spam di RI Naik Dua Kali Lipat 2021, Aksi Penipu Tepat Sasaran. Retrieved from CNN Indonesia website: https://www.cnnindonesia.com/teknologi/20211220131919-185-736203/spam-di-ri-naik-dua-kali-lipat-2021-aksi-penipu-tepat-sasaran
Lumbantobing, R. D. H., Manalu, E. M., Sitinjak, D. S. P., & Manurung, T. W. (2021). Rancangan Aplikasi Mobile Pendeteksi Spam SMS di Indonesia. JURNALTIO, 2(1), 24–29.
Panggabean, E. S. … Iqbal, M. (2023). Memahami Spam Terhadap Digitalisasi Masyarakat Desa Perkebunan Sei Balai Kecamatan Sei Balai Kabupaten Batubara. Jurnal Pengabdian Masyarakat (JAPAMAS), 2(2), 270–278.
Reviantika, F., Azhar, Y., & Marthasari, G. I. (2021). Analisis Klasifikasi SMS Spam Menggunakan Logistic Regression. Jurnal Sistem Cerdas, 4(3), 155–160.
Rizki, M., Arhami, M., & Huzeni. (2021). PERBAIKAN ALGORITMA NAIVE BAYES CLASSIFIER MENGGUNAKAN TEKNIK LAPLACIAN CORRECTION. Jurnal Teknologi, 21(1), 39–45.
Sari, M., Purnomo, H. D., & Sembiring, I. (2022). Review?: Algoritma Kriptografi Sistem Keamanan SMS di Android. JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY), 2(1), 11–15.
Shenita, E., & Suendri. (2023). Web-Based Village Fund Assistance Distribution Information System Using the Quota Based Method. Sinkron?: Jurnal Dan Penelitian Teknik Informatika, 8(2), 708–718.
Sutra Dewi, I. (2022). Perlindungan Hukum Bagi Konsumen Atas Sms Spam Yang Dikirim Oleh Operator Seluler.
Syahranitazli, & Samsudin. (2023). SISTEM INFORMASI GEOGRAFIS PERSEBARAN PONDOK PESANTREN KABUPATEN LANGKAT DAN BINJAI MENGGUNAKAN LEAFLET. Jurnal Pendidikan Teknologi Informasi (JUKANTI), 6(1), 2621–1467.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Diah Ayu Anggraini, Muhammad Ikhsan, Suhardi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.