ac

Analysis of Gradient Boosting, XGBoost, and CatBoost on Mobile Phone Classification

Authors

  • Agus Fahmi Limas Ptr Universitas Deli Sumatera
  • Muhammad Mizan Siregar Universitas Deli Sumatera
  • Irwan Daniel Universitas Deli Sumatera

DOI:

10.47709/cnahpc.v6i2.3790

Keywords:

Mobile phone classification, Gradient Boosting, XGBoost, CatBoost, Normalization

Dimension Badge Record



Abstract

In the ever-evolving landscape of mobile phone technology, accurately classifying device specifications is paramount for market analysis and consumer decision-making. This research conducts a comprehensive analysis of mobile phone specification classification using three prominent machine learning algorithms: Gradient Boosting, XGBoost, and CatBoost. Through meticulous dataset acquisition and preprocessing steps, including resolution normalization and price categorization, features essential for classification analysis were standardized. Robust cross-validation techniques were employed to assess model performance effectively. The study demonstrates the significant impact of normalization techniques on improving model performance across all algorithms and fold variations. CatBoost consistently emerges as the top-performing algorithm, followed closely by XGBoost, with Gradient Boosting displaying respectable performance. Notably, CatBoost consistently achieves the highest AUC values and accuracy scores, demonstrating superior performance in accurately classifying mobile phone specifications. These findings underscore the importance of preprocessing methods and algorithm selection in achieving optimal classification results. For mobile phone manufacturers, leveraging machine learning algorithms for effective classification can inform product development strategies, optimizing offerings based on consumer preferences. Similarly, for data analysts, employing appropriate preprocessing techniques and algorithmic approaches can lead to more accurate predictions and informed decision-making. Future research avenues include exploring advanced preprocessing methods, investigating alternative algorithms, and incorporating additional features or datasets to enrich the classification process. Overall, this research contributes to understanding mobile phone specification classification through machine learning methodologies, offering actionable insights for industry practitioners and researchers to address evolving market dynamics and consumer preferences.

Downloads

Download data is not yet available.
Google Scholar Cite Analysis
Abstract viewed = 413 times

References

Abdurohman, M., & Putrada, A. G. (2023). Forecasting Model for Lighting Electricity Load with a Limited Dataset using XGBoost. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(2), 571–580. https://doi.org/10.22219/kinetik.v8i2.1687

Adler, A. I., & Painsky, A. (2022). Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection. Entropy, 24(5). https://doi.org/10.3390/e24050687

Ampomah, E. K., Qin, Z., & Nyame, G. (2020). Evaluation of Tree-Based Ensemble Machine Learning Models in Predicting Stock Price Direction of Movement. Information, 11(6), 332. https://doi.org/10.3390/info11060332

Aravind, K. R. N. V. V. D., Shyry, S. P., & Felix, Y. (2019). Classification of Healthy and Rot Leaves of Apple Using Gradient Boosting and Support Vector Classifier. International Journal of Innovative Technology and Exploring Engineering, 8(12), 2868–2872. https://doi.org/10.35940/ijitee.L3049.1081219

Avelino, J. N. M., Felizmenio, E. P., & Naval, P. C. (2022). Unraveling COVID-19 Misinformation with Latent Dirichlet Allocation and CatBoost. Communications in Computer and Information Science, 1653 CCIS(July), 16–28. https://doi.org/10.1007/978-3-031-16210-7_2

Boldini, D., Grisoni, F., Kuhn, D., Friedrich, L., & Sieber, S. A. (2023). Practical guidelines for the use of gradient boosting for molecular property prediction. Journal of Cheminformatics, 15(1), 1–13. https://doi.org/10.1186/s13321-023-00743-7

Breskuvien, D., & Dzemyda, G. (2023). Categorical Feature Encoding Techniques for Improved Classifier Performance when Dealing with Imbalanced Data of Fraudulent Transactions. International Journal of Computers, Communications and Control, 18(3), 1–17. https://doi.org/10.15837/ijccc.2023.3.5433

Callens, A., Morichon, D., Abadie, S., Delpey, M., & Liquet, B. (2020). Using Random forest and Gradient boosting trees to improve wave forecast at a specific location. Applied Ocean Research, 104(July), 102339. https://doi.org/10.1016/j.apor.2020.102339

Chang, W., Wang, X., Yang, J., & Qin, T. (2023). An Improved CatBoost-Based Classification Model for Ecological Suitability of Blueberries. Sensors, 23(4). https://doi.org/10.3390/s23041811

Chen, T., Samaranayake, P., Cen, X. Y., Qi, M., & Lan, Y. C. (2022). The Impact of Online Reviews on Consumers’ Purchasing Decisions: Evidence From an Eye-Tracking Study. Frontiers in Psychology, 13(June). https://doi.org/10.3389/fpsyg.2022.865702

Devos, L., Meert, W., & Davis, J. (2020). Fast Gradient Boosting Decision Trees with Bit-Level Data Structures. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11906 LNAI, 590–606. https://doi.org/10.1007/978-3-030-46150-8_35

Dutta, A. K., & Wahab Sait, A. R. (2024). A Fine-Tuned CatBoost-Based Speech Disorder Detection Model. Journal of Disability Research, 3(3), 1–8. https://doi.org/10.57197/JDR-2024-0027

Dwinanda, M. W., Satyahadewi, N., & Andani, W. (2023). Classification of Student Graduation Status Using Xgboost Algorithm. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(3), 1785–1794. https://doi.org/10.30598/barekengvol17iss3pp1785-1794

Fayaz, M., Khan, A., Rahman, J. U., Alharbi, A., Uddin, M. I., & Alouffi, B. (2020). Ensemble machine learning model for classification of spam product reviews. Complexity, 2020. https://doi.org/10.1155/2020/8857570

Fedorov, N., & Petrichenko, Y. (2020). Gradient Boosting–Based Machine Learning Methods in Real Estate Market Forecasting. Proceedings of the 8th Scientific Conference on Information Technologies for Intelligent Decision Making Support (ITIDS 2020), 174(Itids), 203–208. Paris, France: Atlantis Press. https://doi.org/10.2991/aisr.k.201029.039

Gonçalves Freitas, L. J., Edokawa, P. S. D., Carvalho Valadares Rodrigues, T., Thomé de Farias, A. H., & Rodrigues de Alencar, E. (2023). Catboost algorithm application in legal texts and UN 2030 Agenda. Revista de Informatica Teorica e Aplicada, 30(2), 51–58. https://doi.org/10.22456/2175-2745.128836

Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an interdisciplinary review. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00369-8

Herni Yulianti, S. E., Oni Soesanto, & Yuana Sukmawaty. (2022). Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit. Journal of Mathematics: Theory and Applications, 4(1), 21–26. https://doi.org/10.31605/jomta.v4i1.1792

Heydarizad, M., Pumijumnong, N., Sorí, R., Salari, P., & Gimeno, L. (2022). Fractional Importance of Various Moisture Sources Influencing Precipitation in Iran Using a Comparative Analysis of Analytical Hierarchy Processes and Machine Learning Techniques. Atmosphere, 13(12), 6–8. https://doi.org/10.3390/atmos13122019

Hussain, S., Mustafa, M. W., Jumani, T. A., Baloch, S. K., Alotaibi, H., Khan, I., & Khan, A. (2021). A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection. Energy Reports, 7, 4425–4436. https://doi.org/10.1016/j.egyr.2021.07.008

Ibrahim, A. A., Ridwan, R. L., Muhammed, M. M., Abdulaziz, R. O., & Saheed, G. A. (2020). Comparison of the CatBoost Classifier with other Machine Learning Methods. International Journal of Advanced Computer Science and Applications, 11(11), 738–748. https://doi.org/10.14569/IJACSA.2020.0111190

Jabeur, S. Ben, Gharib, C., Mefteh-Wali, S., & Arfi, W. Ben. (2021). CatBoost model and artificial intelligence techniques for corporate failure prediction. Technological Forecasting and Social Change, 166(February), 120658. https://doi.org/10.1016/j.techfore.2021.120658

Jabeur, S. Ben, Mefteh-Wali, S., & Viviani, J. L. (2024). Forecasting gold price with the XGBoost algorithm and SHAP interaction values. Annals of Operations Research, 334(1–3), 679–699. https://doi.org/10.1007/s10479-021-04187-w

Jasman, T. Z., Fadhlullah, M. A., Pratama, A. L., & Rismayani, R. (2022). Analisis Algoritma Gradient Boosting, Adaboost dan Catboost dalam Klasifikasi Kualitas Air. Jurnal Teknik Informatika Dan Sistem Informasi, 8(2), 392–402. https://doi.org/10.28932/jutisi.v8i2.4906

Jinan, A., Situmorang, Z., & Rosnelly, R. (2023). Bulldog Breed Classification Using VGG-19 and Ensemble Learning. International Conference on Information Science and Technology Innovation (ICoSTEC), 2(1), 29–33. https://doi.org/10.35842/icostec.v2i1.29

Kabeyi, M. J. B. (2018). Michael porter’s five competitive forces and generetic strategies, market segmentation strategy and case study of competition in global smartphone manufacturing industry. International Journal of Applied Research, 4(10), 39–45. https://doi.org/10.22271/allresearch.2018.v4.i10a.5275

Karanikola, A., Davrazos, G., Liapis, C. M., & Kotsiantis, S. (2023). Financial sentiment analysis: Classic methods vs. deep learning models. Intelligent Decision Technologies, 17(4), 893–915. https://doi.org/10.3233/IDT-230478

Kumar, V., Kedam, N., Sharma, K. V., Mehta, D. J., & Caloiero, T. (2023). Advanced Machine Learning Techniques to Improve Hydrological Prediction: A Comparative Analysis of Streamflow Prediction Models. Water (Switzerland), 15(14). https://doi.org/10.3390/w15142572

Liew, X. Y., Hameed, N., & Clos, J. (2021). An investigation of XGBoost-based algorithm for breast cancer classification. Machine Learning with Applications, 6(September), 100154. https://doi.org/10.1016/j.mlwa.2021.100154

Lin, C. H., Hsu, P. I., Tseng, C. D., Chao, P. J., Wu, I. T., Ghose, S., … Lee, T. F. (2023). Application of artificial intelligence in endoscopic image analysis for the diagnosis of a gastric cancer pathogen-Helicobacter pylori infection. Scientific Reports, 13(1), 1–12. https://doi.org/10.1038/s41598-023-40179-5

Lo, Y. T., Liao, J. C. hen, Chen, M. H., Chang, C. M., & Li, C. Te. (2021). Predictive modeling for 14-day unplanned hospital readmission risk by using machine learning algorithms. BMC Medical Informatics and Decision Making, 21(1), 1–11. https://doi.org/10.1186/s12911-021-01639-y

Neelakandan, S., & Paulraj, D. (2020). A gradient boosted decision tree-based sentiment classification of twitter data. International Journal of Wavelets, Multiresolution and Information Processing, 18(4). https://doi.org/10.1142/S0219691320500277

Pardede, D., Firmansyah, I., Handayani, M., Riandini, M., & Rosnelly, R. (2022). Comparison Of Multilayer Perceptron’s Activation And Optimization Functions In Classification Of Covid-19 Patients. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 8(3), 271–278. https://doi.org/10.33330/jurteksi.v8i3.1482

Pardede, D., & Hayadi, B. H. (2023). Klasifikasi Sentimen Terhadap Gelaran MotoGP Mandalika 2022 Menggunakan Machine Learning. Jurnal TRANSFORMATIKA, 20(2), 42–50.

Putri, D. J., Dwifebri, M., & Adiwijaya, A. (2023). Text Classification of Indonesian Translated Hadith Using XGBoost Model and Chi-Square Feature Selection. Building of Informatics, Technology and Science (BITS), 4(4), 1732–1738. https://doi.org/10.47065/bits.v4i4.2944

Qinghe, Z., Wen, X., Boyan, H., Jong, W., & Junlong, F. (2022). Optimised extreme gradient boosting model for short term electric load demand forecasting of regional grid system. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-22024-3

Safaei, N., Safaei, B., Seyedekrami, S., Talafidaryani, M., Masoud, A., Wang, S., … Moqri, M. (2022). E-CatBoost: An efficient machine learning framework for predicting ICU mortality using the eICU Collaborative Research Database. In PLoS ONE (Vol. 17). https://doi.org/10.1371/journal.pone.0262895

Singh, S., & More, R. (2022). Mobile Phone Companies Increasing Market Share through Innovations, R&D Spending and Patents. EMAJ: Emerging Markets Journal, 12(1), 76–85. https://doi.org/10.5195/emaj.2022.251

Siringoringo, R., Perangin Angin, R., & Rumahorbo, B. (2022). Model Klasifikasi Genetic-XGBoost Dengan T-Distributed Stochastic Neighbor Embedding Pada Peramalan Pasar. Jurnal Times, XI(1), 30–36. Retrieved from https://archive.ics.uci.edu/ml/datasets/online+retail

Sopiyan, M., Fauziah, F., & Wijaya, Y. F. (2022). Fraud Detection Using Random Forest Classifier, Logistic Regression, and Gradient Boosting Classifier Algorithms on Credit Cards. JUITA: Jurnal Informatika, 10(1), 77. https://doi.org/10.30595/juita.v10i1.12050

Suhendra, R., Husdayanti, N., Suryadi, S., Juliwardi, I., Sanusi, S., Ridho, A., … Ikhsan, I. (2023). Cardiovascular Disease Prediction Using Gradient Boosting Classifier. Infolitika Journal of Data Science, 1(2), 56–62. https://doi.org/10.60084/ijds.v1i2.131

Sun, F., Luh, D.-B., Zhao, Y., & Sun, Y. (2022). Product Classification With the Motivation of Target Consumers by Deep Learning. IEEE Access, 10, 62258–62267. https://doi.org/10.1109/ACCESS.2022.3181624

Abdurohman, M., & Putrada, A. G. (2023). Forecasting Model for Lighting Electricity Load with a Limited Dataset using XGBoost. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(2), 571–580. https://doi.org/10.22219/kinetik.v8i2.1687

Adler, A. I., & Painsky, A. (2022). Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection. Entropy, 24(5). https://doi.org/10.3390/e24050687

Ampomah, E. K., Qin, Z., & Nyame, G. (2020). Evaluation of Tree-Based Ensemble Machine Learning Models in Predicting Stock Price Direction of Movement. Information, 11(6), 332. https://doi.org/10.3390/info11060332

Aravind, K. R. N. V. V. D., Shyry, S. P., & Felix, Y. (2019). Classification of Healthy and Rot Leaves of Apple Using Gradient Boosting and Support Vector Classifier. International Journal of Innovative Technology and Exploring Engineering, 8(12), 2868–2872. https://doi.org/10.35940/ijitee.L3049.1081219

Avelino, J. N. M., Felizmenio, E. P., & Naval, P. C. (2022). Unraveling COVID-19 Misinformation with Latent Dirichlet Allocation and CatBoost. Communications in Computer and Information Science, 1653 CCIS(July), 16–28. https://doi.org/10.1007/978-3-031-16210-7_2

Boldini, D., Grisoni, F., Kuhn, D., Friedrich, L., & Sieber, S. A. (2023). Practical guidelines for the use of gradient boosting for molecular property prediction. Journal of Cheminformatics, 15(1), 1–13. https://doi.org/10.1186/s13321-023-00743-7

Breskuvien, D., & Dzemyda, G. (2023). Categorical Feature Encoding Techniques for Improved Classifier Performance when Dealing with Imbalanced Data of Fraudulent Transactions. International Journal of Computers, Communications and Control, 18(3), 1–17. https://doi.org/10.15837/ijccc.2023.3.5433

Callens, A., Morichon, D., Abadie, S., Delpey, M., & Liquet, B. (2020). Using Random forest and Gradient boosting trees to improve wave forecast at a specific location. Applied Ocean Research, 104(July), 102339. https://doi.org/10.1016/j.apor.2020.102339

Chang, W., Wang, X., Yang, J., & Qin, T. (2023). An Improved CatBoost-Based Classification Model for Ecological Suitability of Blueberries. Sensors, 23(4). https://doi.org/10.3390/s23041811

Chen, T., Samaranayake, P., Cen, X. Y., Qi, M., & Lan, Y. C. (2022). The Impact of Online Reviews on Consumers’ Purchasing Decisions: Evidence From an Eye-Tracking Study. Frontiers in Psychology, 13(June). https://doi.org/10.3389/fpsyg.2022.865702

Devos, L., Meert, W., & Davis, J. (2020). Fast Gradient Boosting Decision Trees with Bit-Level Data Structures. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11906 LNAI, 590–606. https://doi.org/10.1007/978-3-030-46150-8_35

Dutta, A. K., & Wahab Sait, A. R. (2024). A Fine-Tuned CatBoost-Based Speech Disorder Detection Model. Journal of Disability Research, 3(3), 1–8. https://doi.org/10.57197/JDR-2024-0027

Dwinanda, M. W., Satyahadewi, N., & Andani, W. (2023). Classification of Student Graduation Status Using Xgboost Algorithm. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(3), 1785–1794. https://doi.org/10.30598/barekengvol17iss3pp1785-1794

Fayaz, M., Khan, A., Rahman, J. U., Alharbi, A., Uddin, M. I., & Alouffi, B. (2020). Ensemble machine learning model for classification of spam product reviews. Complexity, 2020. https://doi.org/10.1155/2020/8857570

Fedorov, N., & Petrichenko, Y. (2020). Gradient Boosting–Based Machine Learning Methods in Real Estate Market Forecasting. Proceedings of the 8th Scientific Conference on Information Technologies for Intelligent Decision Making Support (ITIDS 2020), 174(Itids), 203–208. Paris, France: Atlantis Press. https://doi.org/10.2991/aisr.k.201029.039

Gonçalves Freitas, L. J., Edokawa, P. S. D., Carvalho Valadares Rodrigues, T., Thomé de Farias, A. H., & Rodrigues de Alencar, E. (2023). Catboost algorithm application in legal texts and UN 2030 Agenda. Revista de Informatica Teorica e Aplicada, 30(2), 51–58. https://doi.org/10.22456/2175-2745.128836

Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an interdisciplinary review. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00369-8

Herni Yulianti, S. E., Oni Soesanto, & Yuana Sukmawaty. (2022). Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit. Journal of Mathematics: Theory and Applications, 4(1), 21–26. https://doi.org/10.31605/jomta.v4i1.1792

Heydarizad, M., Pumijumnong, N., Sorí, R., Salari, P., & Gimeno, L. (2022). Fractional Importance of Various Moisture Sources Influencing Precipitation in Iran Using a Comparative Analysis of Analytical Hierarchy Processes and Machine Learning Techniques. Atmosphere, 13(12), 6–8. https://doi.org/10.3390/atmos13122019

Hussain, S., Mustafa, M. W., Jumani, T. A., Baloch, S. K., Alotaibi, H., Khan, I., & Khan, A. (2021). A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection. Energy Reports, 7, 4425–4436. https://doi.org/10.1016/j.egyr.2021.07.008

Ibrahim, A. A., Ridwan, R. L., Muhammed, M. M., Abdulaziz, R. O., & Saheed, G. A. (2020). Comparison of the CatBoost Classifier with other Machine Learning Methods. International Journal of Advanced Computer Science and Applications, 11(11), 738–748. https://doi.org/10.14569/IJACSA.2020.0111190

Jabeur, S. Ben, Gharib, C., Mefteh-Wali, S., & Arfi, W. Ben. (2021). CatBoost model and artificial intelligence techniques for corporate failure prediction. Technological Forecasting and Social Change, 166(February), 120658. https://doi.org/10.1016/j.techfore.2021.120658

Jabeur, S. Ben, Mefteh-Wali, S., & Viviani, J. L. (2024). Forecasting gold price with the XGBoost algorithm and SHAP interaction values. Annals of Operations Research, 334(1–3), 679–699. https://doi.org/10.1007/s10479-021-04187-w

Jasman, T. Z., Fadhlullah, M. A., Pratama, A. L., & Rismayani, R. (2022). Analisis Algoritma Gradient Boosting, Adaboost dan Catboost dalam Klasifikasi Kualitas Air. Jurnal Teknik Informatika Dan Sistem Informasi, 8(2), 392–402. https://doi.org/10.28932/jutisi.v8i2.4906

Jinan, A., Situmorang, Z., & Rosnelly, R. (2023). Bulldog Breed Classification Using VGG-19 and Ensemble Learning. International Conference on Information Science and Technology Innovation (ICoSTEC), 2(1), 29–33. https://doi.org/10.35842/icostec.v2i1.29

Kabeyi, M. J. B. (2018). Michael porter’s five competitive forces and generetic strategies, market segmentation strategy and case study of competition in global smartphone manufacturing industry. International Journal of Applied Research, 4(10), 39–45. https://doi.org/10.22271/allresearch.2018.v4.i10a.5275

Karanikola, A., Davrazos, G., Liapis, C. M., & Kotsiantis, S. (2023). Financial sentiment analysis: Classic methods vs. deep learning models. Intelligent Decision Technologies, 17(4), 893–915. https://doi.org/10.3233/IDT-230478

Kumar, V., Kedam, N., Sharma, K. V., Mehta, D. J., & Caloiero, T. (2023). Advanced Machine Learning Techniques to Improve Hydrological Prediction: A Comparative Analysis of Streamflow Prediction Models. Water (Switzerland), 15(14). https://doi.org/10.3390/w15142572

Liew, X. Y., Hameed, N., & Clos, J. (2021). An investigation of XGBoost-based algorithm for breast cancer classification. Machine Learning with Applications, 6(September), 100154. https://doi.org/10.1016/j.mlwa.2021.100154

Lin, C. H., Hsu, P. I., Tseng, C. D., Chao, P. J., Wu, I. T., Ghose, S., … Lee, T. F. (2023). Application of artificial intelligence in endoscopic image analysis for the diagnosis of a gastric cancer pathogen-Helicobacter pylori infection. Scientific Reports, 13(1), 1–12. https://doi.org/10.1038/s41598-023-40179-5

Lo, Y. T., Liao, J. C. hen, Chen, M. H., Chang, C. M., & Li, C. Te. (2021). Predictive modeling for 14-day unplanned hospital readmission risk by using machine learning algorithms. BMC Medical Informatics and Decision Making, 21(1), 1–11. https://doi.org/10.1186/s12911-021-01639-y

Neelakandan, S., & Paulraj, D. (2020). A gradient boosted decision tree-based sentiment classification of twitter data. International Journal of Wavelets, Multiresolution and Information Processing, 18(4). https://doi.org/10.1142/S0219691320500277

Pardede, D., Firmansyah, I., Handayani, M., Riandini, M., & Rosnelly, R. (2022). Comparison Of Multilayer Perceptron’s Activation And Optimization Functions In Classification Of Covid-19 Patients. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 8(3), 271–278. https://doi.org/10.33330/jurteksi.v8i3.1482

Pardede, D., & Hayadi, B. H. (2023). Klasifikasi Sentimen Terhadap Gelaran MotoGP Mandalika 2022 Menggunakan Machine Learning. Jurnal TRANSFORMATIKA, 20(2), 42–50.

Putri, D. J., Dwifebri, M., & Adiwijaya, A. (2023). Text Classification of Indonesian Translated Hadith Using XGBoost Model and Chi-Square Feature Selection. Building of Informatics, Technology and Science (BITS), 4(4), 1732–1738. https://doi.org/10.47065/bits.v4i4.2944

Qinghe, Z., Wen, X., Boyan, H., Jong, W., & Junlong, F. (2022). Optimised extreme gradient boosting model for short term electric load demand forecasting of regional grid system. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-22024-3

Safaei, N., Safaei, B., Seyedekrami, S., Talafidaryani, M., Masoud, A., Wang, S., … Moqri, M. (2022). E-CatBoost: An efficient machine learning framework for predicting ICU mortality using the eICU Collaborative Research Database. In PLoS ONE (Vol. 17). https://doi.org/10.1371/journal.pone.0262895

Singh, S., & More, R. (2022). Mobile Phone Companies Increasing Market Share through Innovations, R&D Spending and Patents. EMAJ: Emerging Markets Journal, 12(1), 76–85. https://doi.org/10.5195/emaj.2022.251

Siringoringo, R., Perangin Angin, R., & Rumahorbo, B. (2022). Model Klasifikasi Genetic-XGBoost Dengan T-Distributed Stochastic Neighbor Embedding Pada Peramalan Pasar. Jurnal Times, XI(1), 30–36. Retrieved from https://archive.ics.uci.edu/ml/datasets/online+retail

Sopiyan, M., Fauziah, F., & Wijaya, Y. F. (2022). Fraud Detection Using Random Forest Classifier, Logistic Regression, and Gradient Boosting Classifier Algorithms on Credit Cards. JUITA: Jurnal Informatika, 10(1), 77. https://doi.org/10.30595/juita.v10i1.12050

Suhendra, R., Husdayanti, N., Suryadi, S., Juliwardi, I., Sanusi, S., Ridho, A., … Ikhsan, I. (2023). Cardiovascular Disease Prediction Using Gradient Boosting Classifier. Infolitika Journal of Data Science, 1(2), 56–62. https://doi.org/10.60084/ijds.v1i2.131

Sun, F., Luh, D.-B., Zhao, Y., & Sun, Y. (2022). Product Classification With the Motivation of Target Consumers by Deep Learning. IEEE Access, 10, 62258–62267. https://doi.org/10.1109/ACCESS.2022.3181624

Suryana, S. E., Warsito, B., & Suparti, S. (2021). PENERAPAN GRADIENT BOOSTING DENGAN HYPEROPT UNTUK MEMPREDIKSI KEBERHASILAN TELEMARKETING BANK. Jurnal Gaussian, 10(4), 617–623. https://doi.org/10.14710/j.gauss.v10i4.31335

Tusher, A. S., Rahman, M. A., Islam, M. R., & Hossain, M. J. (2024). Adversarial training-based robust lifetime prediction system for power transformers. Electric Power Systems Research, 231, 110351. https://doi.org/10.1016/j.epsr.2024.110351

Wang, J. C., Hsieh, C. Y., & Kung, S. H. (2023). The impact of smartphone use on learning effectiveness: A case study of primary school students. In Education and Information Technologies (Vol. 28). Springer US. https://doi.org/10.1007/s10639-022-11430-9

Wang, N., Zeng, M., Li, Y., Wu, F. X., & Li, M. (2021). Essential Protein Prediction Based on node2vec and XGBoost. Journal of Computational Biology, 28(7), 687–700. https://doi.org/10.1089/cmb.2020.0543

Zhang, X. (2022). A Model Combining LightGBM and Neural Network for High-frequency Realized Volatility Forecasting. Proceedings of the 2022 7th International Conference on Financial Innovation and Economic Development (ICFIED 2022), 648(Icfied), 2906–2912. https://doi.org/10.2991/aebmr.k.220307.473

Zheng, Y., Guo, X., Yang, Y., Wang, H., Liao, K., & Qin, J. (2023). Phonocardiogram transfer learning-based CatBoost model for diastolic dysfunction identification using multiple domain-specific deep feature fusion. Computers in Biology and Medicine, 156(1), 106707. https://doi.org/10.1016/j.compbiomed.2023.106707

Downloads

ARTICLE Published HISTORY

Submitted Date: 2024-04-22
Accepted Date: 2024-04-23
Published Date: 2024-04-28

How to Cite

Agus Fahmi Limas Ptr, Siregar, M. M. ., & Daniel, I. . (2024). Analysis of Gradient Boosting, XGBoost, and CatBoost on Mobile Phone Classification. Journal of Computer Networks, Architecture and High Performance Computing, 6(2), 661-670. https://doi.org/10.47709/cnahpc.v6i2.3790