ac

Implementation of K-Means Clustering in Recognizing Crime Hotspots and Traffic Issues Through GIS

Authors

  • Aryo Pratama Universitas Islam Negeri Sumatera Utara
  • Muhammad Dedi Irawan Universitas Islam Negeri Sumatera Utara
  • Septiana Dewi Andriana Universitas Harapan Medan, Medan, Indonesia

DOI:

10.47709/cnahpc.v6i2.3771

Keywords:

Criminality, Traffic Issues, K-means, Clustering, GIS

Dimension Badge Record



Abstract

The challenge of accurately identifying instances of crime and traffic issues has rendered the precise localization thereof difficult, thereby impeding the populace's access to information concerning areas of high risk and safety. Employing a Geographic Information System (GIS)-based mapping system utilizing the K-means clustering method, spatial data pertaining to crime and traffic concerns are grouped. The primary objective is to aid in the identification of high-risk areas concerning crime and traffic matters. The methodology employed in this study revolves around the application of the K-means clustering method to categorize spatial data relevant to crime and traffic issues. K-means clustering represents a non-hierarchical cluster analysis technique designed to partition data into multiple groups based on spatial similarities. Research findings elucidate that through the utilization of the K-means clustering method, three distinct sets of clusters predicated upon the intensity of crime and traffic issues emerge. Consequently, from these clustering outcomes, districts and specific locales falling within each cluster, denoted as moderately vulnerable (C1), vulnerable (C2), and highly vulnerable (C3), can be delineated. This system is poised to furnish recommendations to pertinent authorities for addressing areas exhibiting heightened intensity levels while concurrently facilitating the generation of reports and dissemination of information to the public via a dedicated website pertaining to areas at elevated risk of crime and traffic issues.

Downloads

Download data is not yet available.
Google Scholar Cite Analysis
Abstract viewed = 178 times

References

Batubara, M. Z., & Nasution, M. I. P. (2023). Sistem Informasi Online Pengelolaan Dana Sosial Pada Rumah Yatim Sumatera Utara. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(3), 164–171.

Dwirohayati, D. (2020). PEMETAAN DAERAH RAWAN KRIMINALITAS MENGGUNAKAN K-MEANS CLUSTERING POLRESTA BANDAR LAMPUNG.

Husada, C., Hartomo, K. D., & Chernovita, H. P. (2020). Implementasi Haversine Formula untuk Pembuatan SIG Jarak Terdekat ke RS Rujukan COVID-19. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(5), 874 – 883.

Istianto, Y., & ’Uyun, S. (2021). Klasifikasi Kebutuhan Jumlah Produk Makanan Customer Menggunakan K-Means Clustering dengan Optimasi Pusat Awal Cluster Algoritma Genetika. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(5), 861. https://doi.org/10.25126/jtiik.2021842990

Khairiyati, E. D., Nasution, M. I. P., & Ikhwan, A. (2020). PEMETAAN AKURAT LOKASI KERJA NYATA DENGAN DATA MONOGRAFI DESA. Jurnal Teknologi Informasi, 4(1), 7–12. https://doi.org/10.36294/jurti.v4i1.1299

Maharrani, R. H., Abda’u, P. D., & Faiz, M. N. (2024). Clustering method for criminal crime acts using K-means and principal component analysis. Indonesian Journal of Electrical Engineering and Computer Science, 34(1), 224–232. https://doi.org/10.11591/ijeecs.v34.i1.pp224-232

Moruk, F. X., Boboy, V. D., Tahuk, W. J., Kamirsa, Y. P., & Kaesmetan, Y. R. (2024). Penentuan Titik Lokasi Daerah Rawan Banjir Di Kabupaten Malaka Menggunakan Metode K-Means Clustering. Simpatik: Jurnal Sistem Informasi Dan Informatika, 3(2), 67–76. https://doi.org/10.31294/simpatik.v3i2.2948

Putra, A. C., & Hartomo, K. D. (2021). Optimalisasi Penyaluran Bantuan Pemerintah Untuk UMKM Menggunakan Metode Fuzzy C-Means. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(3), 474–482.

Riswandi, A., Zufria, I., & Irawan, M. D. (2023). Sistem Informasi Geografis Untuk Monitoring Menara Telekomunikasi Menggunakan Metode Haversine Berbasis Android. Jurnal Ilmiah Binary STMIK Bina Nusantara Jaya, 5(1), 15–21.

Setiawan, B., & Triase. (2023). IMPLEMENTASI DESAIN UI/UX APLIKASI OURTICLE KE DALAM APLIKASI BERBASIS ANDROID. SIBATIK JOURNAL, 2(3), 805–818.

Syaidaturrahmi, & Ikhwan, A. (2022). Integrated service post information system to support baby growth data reporting. Sinkron?: Jurnal Dan Penelitian Teknik Informatika, 6(4), 2508–2517.

Thariq, N. (2019). Sistem Informasi Geografis Pemetaan Wilayah Rawan Banjir Menggunakan Metode K-Means Clustering.

Vernanda, A. A., Faisol, A., & Vendyansyah, N. (2021). PENERAPAN METODE K-MEANS CLUSTERING UNTUK PEMETAAN DAERAH RAWAN KECELAKAAN LALU LINTAS DI KOTA MALANG BERBASIS WEBSITE. JATI (Jurnal Mahasiswa Teknik Informatika), 5(2), 836–844.

Wanto, A., Windarto, M. N. H. S. A. P., Ginantra, D. H. N. L. W. S. R., Negara, D. N. E. S., Dewi, M. R. L. S. V., & Prianto, C. (2020). Data Mining?: Algoritma & Implementasi. In Yayasan Kita Menulis.

Widodo, F. A. (2018). SISTEM INFORMASI GEOGRAFIS BERBASIS WEB UNTUK PEMETAAN PERKARA PADA WILAYAH HUKUM PENGADILAN NEGERI TEMANGGUNG.

Wulaningrum, H., Lubis, I., & Andriana, S. D. (2022). AUGMENTED REALITY PENGENALAN LINGKUNGAN KAMPUS II UNIVERSITAS HARAPAN MEDAN DENGAN METODE MARKERLESS. Jurnal Krisnadana, 2(1), 233–241.

Downloads

ARTICLE Published HISTORY

Submitted Date: 2024-04-05
Accepted Date: 2024-04-05
Published Date: 2024-04-28

How to Cite

Pratama, A., Irawan, M. D., & Andriana, S. D. . (2024). Implementation of K-Means Clustering in Recognizing Crime Hotspots and Traffic Issues Through GIS. Journal of Computer Networks, Architecture and High Performance Computing, 6(2), 771-782. https://doi.org/10.47709/cnahpc.v6i2.3771