Utilization of Data Analytics to Enhance Operational Efficiency in Manufacturing Companies
DOI:
10.47709/cnahpc.v6i2.3723Keywords:
Big Data Analytics, Manufacturing Efficiency, Operational Optimization, Operational Challenges, Data-driven Decision MakingDimension Badge Record
Abstract
In the digital era, manufacturing industries confront challenges like heightened global competition and intricate production processes, urging them to boost efficiency and productivity. Amidst these circumstances, Big Data emerges as a pivotal opportunity to enhance manufacturing performance. Big Data, characterized by vast volumes of data, utilizes advanced data mining to machine learning techniques for analysis. Data analytics, an interdisciplinary field, profoundly impacts manufacturing operations, enabling deeper insights into production processes. By analyzing production data, companies identify inefficiencies, streamline workflows, and enhance operational efficiency and productivity. Predictive maintenance through sensor data analysis prevents machine failures, while logistics data analysis optimizes supply chains and inventory management, reducing costs and enhancing competitiveness. However, implementing Big Data analytics presents challenges such as rapid data growth, diverse data sources, real-time insights, skill shortages, and data fragmentation. Overcoming these hurdles requires robust technology, skilled personnel, and effective data management strategies. Examples of Big Data analytics applications include customer behavior analysis by Amazon and Netflix, fraud detection in insurance, and urban mobility optimization. Success factors in data analytics implementation include effective data-driven communication, technology integration, and skill enhancement. In conclusion, implementing Big Data Analytics in manufacturing promises significant benefits in operational efficiency, product quality, and competitiveness. Overcoming challenges necessitates robust strategies and consideration of ethical and security issues, ensuring responsible data usage. With a deep understanding of Big Data Analytics, manufacturing companies can leverage this technology to achieve higher efficiency and competitiveness in the global market.
Downloads
Abstract viewed = 351 times
References
Abdul-Jabbar, S. S., & K. Farhan, A. (2022). Data Analytics and Techniques. Aro-the Scientific Journal of Koya University, 10(2), 45–55. https://doi.org/10.14500/aro.10975
Abuali, M. (2013). Big data in manufacturing. Proceedings for the Joint Conference: MFPT 2013 and ISA’s 59th International Instrumentation Symposium, ISA 2013: Sensors and Systems for Reliability, Safety and Affordability, (March). https://doi.org/10.51542/ijscia.v2i1.11
Alsolbi, I., Shavaki, F. H., Agarwal, R., Bharathy, G. K., Prakash, S., & Prasad, M. (2023). Big data optimisation and management in supply chain management: a systematic literature review. Artificial Intelligence Review, 56, 253–284. https://doi.org/10.1007/s10462-023-10505-4
Aniko, A. R., Muttaqin, A. N., & Fadilah, M. I. (2024). Business Process Management in IT Company: Systematic Literature Review. SITEKNIK?: Sistem Informasi, Teknik Dan Ilmu Terapan, 1(1), 58–67. Retrieved from https://jurnalsiteknik.com/index.php/halaman/article/view/8/7
Bag, S., Wood, L. C., Xu, L., Dhamija, P., & Kayikci, Y. (2020). Big data analytics as an operational excellence approach to enhance sustainable supply chain performance. Resources, Conservation and Recycling, 153, 104559. https://doi.org/10.1016/j.resconrec.2019.104559
Balaji, D. . (2022). To examine the application of data science to physics. Technoarete Transactions on Advances in Data Science and Analytics, 1(2), 21–28. https://doi.org/10.36647/ttadsa/01.02.a004
Chang, V. I. C., & Lin, W. (2018). How Big Data Transforms Manufacturing Industry. International Journal of Strategic Engineering, 2(1), 39–51. https://doi.org/10.4018/ijose.2019010104
Dahiya, R., Le, S., Ring, J. K., & Watson, K. (2022). Big data analytics and competitive advantage: the strategic role of firm-specific knowledge. Journal of Strategy and Management, 15(2), 175–193. https://doi.org/10.1108/JSMA-08-2020-0203
Dai, H. N., Wang, H., Xu, G., Wan, J., & Imran, M. (2020). Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies. Enterprise Information Systems, 14(9–10), 1279–1303. https://doi.org/10.1080/17517575.2019.1633689
Dasgupta, N. (2018). Practical Big Data Analytics: Hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark, NoSQL and R. Packt Publishing.
Fang, P., Yang, J., Zheng, L., Zhong, R. Y., & Jiang, Y. (2020). Data analytics-enable production visibility for Cyber-Physical Production Systems. Journal of Manufacturing Systems, 57(November), 242–253. https://doi.org/10.1016/j.jmsy.2020.09.002
Hajmirfattahtabrizi, M., & Song, H. (2019). Investigation of bottlenecks in supply chain system for minimizing total cost by integrating manufacturing modelling based on MINLP approach. Applied Sciences (Switzerland), 9(6). https://doi.org/10.3390/app9061185
Ikegwu, A. C., Nweke, H. F., Anikwe, C. V., Alo, U. R., & Okonkwo, O. R. (2022). Big data analytics for data-driven industry: a review of data sources, tools, challenges, solutions, and research directions. Cluster Computing, 25(5), 3343–3387. https://doi.org/10.1007/s10586-022-03568-5
Johan, A., & Soediantono, D. (2022). Literature Review of the Benefits of Lean Manufacturing on Industrial Performance and Proposed Applications in the Defense Industries. Journal of Industrial Engineering & Management Research, 3(2), 13–23. Retrieved from https://www.jiemar.org/index.php/jiemar/article/view/272
Judijanto, L., Pratama, I. W. A., Jata, I. W., & Utami, E. Y. (2024). Analisis Bibliometrik tentang Pengaruh Big Data dan Analitik dalam Pengembangan Produk dan Layanan. Jurnal Multidisiplin West Science, 3(01), 88–97. https://doi.org/10.58812/jmws.v3i01.942
Lazarova?Molnar, S., Mohamed, N., & Al?Jaroodi, J. (2019). Data analytics framework for Industry 4.0: enabling collaboration for added benefits. IET Collaborative Intelligent Manufacturing, 1(4), 117–125. https://doi.org/10.1049/iet-cim.2019.0012
Lutfi, A. M., & Sunardi, N. (2019). PENGARUH CURRENT RATIO (CR), RETURN ON EQUITY (ROE), DAN SALES GROWTH TERHADAP HARGA SAHAM YANG BERDAMPAK PADA KINERJA KEUANGAN PERUSAHAAN (Pada Perusahaan Manufaktur Sektor Makanan dan Minuman Yang terdaftar di Bursa Efek Indonesia). Jurnal SEKURITAS (Saham, Ekonomi, Keuangan Dan Investasi), 2(3), 83. https://doi.org/10.32493/skt.v2i3.2793
Permatasari, R., Rezha, A., Najaf, E., & Sisephaputra, B. (2022). Business Process Evaluation of ITS Medical Center using Value Stream Mapping. Nusantara Science and Technology Proceedings, 2022, 17–23. Galaxy Science. https://doi.org/10.11594/nstp.2022.2904
Ravishankar TK. (2022). Six Sigma Methodologies to Improve Processes in Industries. International Research Journal of Engineering and Technology, 891–895. Retrieved from www.irjet.net
Rojek, I., Jasiulewicz-Kaczmarek, M., Piechowski, M., & Miko?ajewski, D. (2023). An Artificial Intelligence Approach for Improving Maintenance to Supervise Machine Failures and Support Their Repair. Applied Sciences (Switzerland), 13(8). https://doi.org/10.3390/app13084971
Saptioratri Budiono, H. D., Nurcahyo, R., & Habiburrahman, M. (2021). Relationship between manufacturing complexity, strategy, and performance of manufacturing industries in Indonesia. Heliyon, 7(6), e07225. https://doi.org/10.1016/j.heliyon.2021.e07225
Saputra, D., Berry, Y., Hamali, S., Gaspersz, Vi., Syamil, A., Ubud, S., … Panudju, A. A. T. (2023). Manajemen Operasi: Inovasi, Peluang, dan Tantangan Ekonomi Kreatif di Indonesia. PT. Sonpedia Publishing Indonesia.
Soemohadiwidjojo, A. T. (2017). Six Sigma Metode Pengukuran Kinerja Perusahaan Berbasis Statistik. Raih Asa Sukses.
Suhendi, S., Hetharia, D., & Marie, I. A. (2019). Perancangan Model Lean Manufacturing Untuk Mereduksi Biaya Dan Meningkatkan Customer Perceived Value. Jurnal Ilmiah Teknik Industri, 6(1). https://doi.org/10.24912/jitiuntar.v6i1.3023
Sun, Z., Strang, K., & Li, R. (2018). Big data with ten big characteristics. ACM International Conference Proceeding Series, (October), 56–61. https://doi.org/10.1145/3291801.3291822
Tadayonrad, Y., & Ndiaye, A. B. (2023). A new key performance indicator model for demand forecasting in inventory management considering supply chain reliability and seasonality. Supply Chain Analytics, 3(June), 100026. https://doi.org/10.1016/j.sca.2023.100026
Tokuç, A. A., Uran, Z. E., & Tekin, A. T. (2019). Management of Big Data Projects. In Agile Approaches for Successfully Managing and Executing Projects in the Fourth Industrial Revolution (pp. 279–293). https://doi.org/10.4018/978-1-5225-7865-9.ch015
Waras, M., & Sulistyowati, W. (2021). Implementation of Lean Six Sigma in an Effort to Reduce the Failure of the Pipe Quality Load Test. Procedia of Engineering and Life Science, 1(2). https://doi.org/10.21070/pels.v1i2.933
Xu, J., Naseer, H., Maynard, S., & Filippou, J. (2021). Leveraging Data and Analytics for Digital Business Transformation through DataOps: An Information Processing Perspective. ACIS 2021 - Australasian Conference on Information Systems, Proceedings, 1–11.
Yaqub, M. Z., & Alsabban, A. (2023). Industry-4.0-Enabled Digital Transformation: Prospects, Instruments, Challenges, and Implications for Business Strategies. Sustainability (Switzerland), 15(11). https://doi.org/10.3390/su15118553
Zakaria, M., Muhamad, U., & Tamyiz, H. (2023). Perancangan Akuisisi Data Monitoring Kondisi Area Mesin Calendering Tekstil Dengan IoT. Progresif: Jurnal Ilmiah Komputer, 20(1), 1–12. Retrieved from http://ojs.stmik-banjarbaru.ac.id/index.php/progresif/article/view/1467
Zanezi, A. C., & de Carvalho, M. M. (2023). How project management principles affect Lean Six Sigma program and projects: a systematic literature review. Brazilian Journal of Operations and Production Management, 20(1). https://doi.org/10.14488/BJOPM.1564.2023
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2024 Rendi Aprijal, Iqbal Wiranata Siregar, Andysah Putera Utama Siahaan, Leni Marlina
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.