Integration Of Open CV LBF Model To Detect Masks In Health Protocol Surveillance Systems
DOI:
10.47709/cnahpc.v6i1.3460Keywords:
Artificial Intelligence, Landmark Detector, Mask Detector, OpenCV, LBF ModelDimension Badge Record
Abstract
The Corona Viruses Diseases pandemic that was rife in early 2020 and hit many countries caused discipline to be applied to health protocols. The prevention of physical contact between humans gave rise to new traditions in aspects of human life. Almost all public facilities in Indonesia require visitors to wear masks as a means of preventing exposure to viruses in the air. However, this advice is often ignored by some people. In addition to endangering many people, this condition also makes public facility managers need extra resources in the form of time, energy and costs to ensure this health protocol is implemented. The existence of these problems triggers the emergence of innovations to present a system that provides assurance and convenience in ensuring compliance with health protocols for the use of masks through creative and effective methods. This method is done by utilizing CCTV cameras or webcams at the entrance equipped with an Artificial Intelligence program designed to be able to detect the use of masks on visitors to public facilities, and without the need for other sensors. The detection system is built on the concept of facial biometrics and utilizes the OpenCV LBF model to detector landmarks on a person's face. Based on tests conducted through several scenario, it can be said that the open CV LBF model successfully identified the use of masks within 35 seconds, increasing the reading distance to 2 meters making the process longer. In addition, in indoor lighting conditions, the system experienced 1 detection error with a process time of 18 seconds, while for well-light outdoor conditions the system managed to detect all objects within 10 seconds.
Downloads
Abstract viewed = 128 times
References
Al Hajri, E., Hafeez, F., & Ameer Azhar, N. V. (2019). Fully automated classroom attendance system. International Journal of Interactive Mobile Technologies, 13(8), 95–106. https://doi.org/10.3991/ijim.v13i08.10100
Alam, H., Saleh, K., Juliana, K. B., & Juliana BRPane, K. (2020). Pengenalan Wajah Secara Real-Time Menggunakan Algoritma LBPH Pada Raspiberry PI. https://doi.org/10.30596/rele.v1i1.4471
Alam, H., Saleh, K., & Pane, K. J. B. (2020). Pengenalan Wajah Secara Real-Time Menggunakan Algoritma LBPH Pada Raspiberry PI. RELE (Rekayasa Elektrikal Dan Energi)?: Jurnal Teknik Elektro, 2(2), 95–100. https://doi.org/10.30596/rele.v2i2.4471
Bytedeco. (2021). JavaCV. Bytedeco. https://github.com/bytedeco/javacv
Cobantoro, A. F. (2018). Analisa Qos (Quality Of Service) Pada Jaringan Rt-Rw Net Dengan Kendali Raspberry Pi. Network Engineering Research Operation, 4(1), 31–36. https://doi.org/10.21107/nero.v4i1.109
Cobantoro, A. F., Masykur, F., & Sussolaikah, K. (2023). Performance Analysis Of Alexnet Convolutional Neural Network (Cnn) Architecture With Image Objects Of Rice Plant Leaves. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 8(2), 111–116. https://doi.org/10.33480/jitk.v8i2.4060
Hutamaputra, W., & Utaminingrum, F. (2021). Implementasi Facial Landmark dalam Pengenalan Wajah pada Sistem Pembayaran Elektronik. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(5), 2058–2064.
Mallick, S. (2017). GSOC2017/data/lbfmodel.yaml. Github. https://github.com/spmallick/GSOC2017/blob/master/data/lbfmodel.yaml
Mallick, S. (2018). Facemark?: Facial Landmark Detection using OpenCV. Learnopencv.Com. https://learnopencv.com/facemark-facial-landmark-detection-using-opencv/
Masykur, F., Prasetyo, A., Widaningrum, I., Cobantoro, A. F., & Setyawan, M. B. (2020). Application of Message Queuing Telemetry Transport (MQTT) Protocol in the Internet of Things to Monitor Mushroom Cultivation. 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 135–139. https://doi.org/10.1109/ICITACEE50144.2020.9239118
Oktavianto, H., Satria Bakti, B., Cobantoro, A. F., Jember, M., Karimata, J., Jember, S., & Timur, J. (n.d.). Untuk Segmentasi Wilayah. Bina Insani ICT Journal, 10(2), 145–153.
Ongky Heri, T., Wahyudiono, N., Dziqie, M., & Al-Farauqi, A. (2021). Proses Sekuritisasi pandemi Covid-19 di Indonesia. Jurnal Ilmu Politik Dan Komunikasi, XI(2), 32–47.
OpenCV. (n.d.). cv::face::FacemarkLBF Class Reference. OpenCV. Retrieved January 12, 2022, from https://docs.opencv.org/3.4/dc/d63/classcv_1_1face_1_1FacemarkLBF.html
Peeri, N. C., Shrestha, N., Siddikur Rahman, M., Zaki, R., Tan, Z., Bibi, S., Baghbanzadeh, M., Aghamohammadi, N., Zhang, W., & Haque, U. (2021). The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? In International Journal of Epidemiology (Vol. 49, Issue 3, pp. 717–726). Oxford University Press. https://doi.org/10.1093/IJE/DYAA033
Ren, S., Cao, X., Wei, Y., & Sun, J. (2014). Face alignment at 3000 FPS via regressing local binary features. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1(1), 1685–1692. https://doi.org/10.1109/CVPR.2014.218
Setyawan, M. B., Cobantoro, A. F., Prasetyo, A., Informatika, P. S., Teknik, F., & Ponorogo, U. M. (2020). Prototype Untuk Monitoring Presensi Siswa Menggunakan. 13(1).
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2023 Yovi Litanianda, Moh Bhanu Setyawan, Adi Fajaryanto C, Ismail Abdurrozzaq Z, Charisma Wahyu Aditya
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.