Sentiment Analysis on Cyanide Case After 'Ice Cold' Aired with NLP Method using Naïve Bayes Algorithm
DOI:
10.47709/cnahpc.v6i1.3408Keywords:
Natural Language Processing, Sentiment Analysis, Jessica Wongso, Cyanide Coffee, Ice Cold, Netflix, Naïve BayesDimension Badge Record
Abstract
Information technology is developing increasingly rapidly, and the reach of the Internet has expanded even to remote areas. The public increasingly uses social media as a source of information that discusses all aspects of people's lives. Social media has a vital role for most people, one of which is the news of the cyanide coffee case. The Cyanide Coffee case was discussed again by netizens after Netflix raised this case in a documentary film entitled Ice Cold, which made the public even more convinced of the irregularities of the case. Based on this, sentiment analysis is needed to extract comments to obtain public opinion information. The sentiment analysis aims to create a sentiment model to determine public comments on this case. Therefore, this research was conducted to find out and classify public sentiment on the Cyanide Coffee Case using the Natural Language Processing (NLP) method, which is a text preprocessing process followed by the tokenization stage. Data filtering was used using Indonesian Stopwords, and then normalization was continued using Porter Stemmer. In this study, data collection was carried out based on public comments on Ice Cold shows on the TikTok platform using TikTok Comments Scraper. The test results show that the classification using naïve Bayes obtained the results of 22 negative comments, 4052 neutral comments and 34 positive comments. The classification results of this study are 87% accuracy, 97.6% precision, 87% recall, and 91.9% F-Score.
Downloads
Abstract viewed = 242 times
References
Aggarwal, C. C., & Zhai, C. (2013). Mining text data. Mining Text Data 9781461432, 1–522. doi: 10.1007/978-1-4614-3223-4.
Br Ginting, S. L., & Trinanda, R. P. (2013). Teknik Data Mining Menggunakan Metode Bayes Classifier untuk Optimalisasi Pencarian padAplikasi Perpustakaan (Studi Kasus: Perpustakaan Universitas Pasundan – Bandung). Jurnal Teknologi dan Informasi, DOI: 10.34010/jati.v3i2.794.
Jacobi, C., Atteveldt, v. W., & Welbers, K. (2015). Quantitative analysis of large amounts of journalistic texts using topic modelling. Digital Journalism, 89-106. https://doi.org/10.1080/21670811.2015.1093271.
Lisangan, E. A., Gormantara, A., & Carolus, R. Y. (2022). Implementasi Naive Bayes pada Analisis Sentimen Opini Masyarakat di Twitter Terhadap Kondisi New Normal di Indonesia. KONSTELASI Konvergensi Teknologi dan Sistem Informasi, 2(1).
Liu, B. (2012). Morgan & Claypool Publishers.
Munasatya, N., & Novianto, S. (2020). Natural Language Processing untuk Sentimen Analisis Presiden Jokowi Menggunakan Multi Layer Perceptron. Techno Com, 19(3):237-244.
Pandhu, A., & Diki, W. (2020). Analisa sentimen dan Klasifikasi Komentar Positif Pada Twitter dengan Naïve Bayes Classification. BRITech (Jurnal Ilmiah Ilmu Komputer, Sains dan Teknologi Terapan), 1(2). 32–40.
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment Classification using Machine Learning Techniques. Association for Computational Linguistics, 79–86.
Pisceldo, F., Adriani, M., & Manurung, R. (2009). Probabilistic Part Of Speech Tagging for Bahasa Indonesia. Third International MALINDO Workshop, colocated Event ACLIJCNLP.
Suryani, N. S., Linawati, & Saputra, K. O. (2019). Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia. Majalah Ilmiah Teknologi Elektro, 22.
Ting, J. S., Ip, W. H., & Tsang, A. H. (2011). Is Naïve Bayes a Good Classifier for Document Classification? International Journal of Software Engineering and Its Applications, 5(3).
Zunic, A., Corcoran, P., & Spasic, I. (2020). Sentiment Analysis in Health and Well-Being: Systematic Review. JMIR Medical Informatics, 8(1) 1-22. doi : 10.2196/16023.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2023 Rahmatika Hizria, Sarwadi, Rabiatul Adawiyah Hasibuan, Ramadhani Ritonga, Rika Rosnelly
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.