ac

Analysis of Base Station Replacement Using the Cost-231 Propagation Model and Stanford University Interim (SUI) on the LTE Network in Pauh District, Padang

Authors

  • Afrizal Yuhanef Program Studi Teknik Telekomunikasi, Jurusan Teknik Elektro, Politeknik Negeri Padang
  • Zurnawita Program Studi Teknik Telekomunikasi, Jurusan Teknik Elektro, Politeknik Negeri Padang
  • Nadia Pratiwi Program Studi Teknik Telekomunikasi, Jurusan Teknik Elektro, Politeknik Negeri Padang
  • Herry Setiawan Program Studi Teknik Telekomunikasi, Jurusan Teknik Elektro, Politeknik Negeri Padang

DOI:

10.47709/cnahpc.v6i1.3331

Keywords:

base station swap, propagation model, multisectoral, optimization

Dimension Badge Record



Abstract

The increase in network traffic is caused by an imbalance between the number of users and the provision of network capacity, causing the decrease of network performance. This is often found in densely populated areas with a large number of users so that the use of cellular access services is fairly high. For this reason, it is necessary to optimize the network, one of which is by replacing existing devices (swap). Site 31140_Lubuk Bukit, Pauh District, Padang is one of the base stations that has a performance issue, which has a low throughput value (±5Mbps) and a high traffic value of 83 GB/day with Flexi Multi Radio device type and sectoral antenna. Therefore, the existing equipment is replaced, from the FMR type to the Airscale type which minimizes the use of sectoral equipment and antenna types (3 sectors) to multisectoral (6 sectors). The measurement process is carried out using two methods, namely the COST-231 propagation model for the frequency of 1800 MHz and the Stanford University Interim (SUI) for the frequency of 2100 MHz then the Key Performance Indicator (KPI) parameters with the parameters of accessibility, retainability, integrity, mobility, usage, propagation loss and receive power. The results showed that the optimization carried out by the swap method could improve the site's performance, namely a decrease in traffic reaching 31.42% and an increase in throughput up to 60% and followed by an increase in other parameters that have met the threshold value.

Downloads

Download data is not yet available.
Google Scholar Cite Analysis
Abstract viewed = 59 times

References

Afwan, M. I., Nasron, & Suroso. (2019). Analisis Handover Jaringan 4G Telkomsel Di Palembang Pada PT . Metro Global Service. Seminar Nasional Inovasi Dan Aplikasi Teknologi Di Industri (SENIATI), 5(3), 162–166.

Becker, J. (2021). Improving the signal-to-noise ratio in incoherent imaging.

Bhateja, V., Satapathy, S. C., Travieso-González, C. M., & Aradhya, V. N. M. (2021). Correction to: Data Engineering and Intelligent Computing. https://doi.org/10.1007/978-981-16-0171-2_61

Boutiba, K., Bagaa, M., & Ksentini, A. (2021). Radio Link Failure Prediction in 5G Networks. 2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings, 1–6. https://doi.org/10.1109/GLOBECOM46510.2021.9685587

Budalal, A. A. H., Islam, M. R., Abdullah, K., & Abdul Rahman, T. (2020). Modification of Distance Factor in Rain Attenuation Prediction for Short-Range Millimeter-Wave Links. IEEE Antennas and Wireless Propagation Letters, 19(6), 1027–1031. https://doi.org/10.1109/LAWP.2020.2987462

Dreifuerst, R. M., Daulton, S., Qian, Y., Varkey, P., Balandat, M., Kasturia, S., Tomar, A., Yazdan, A., Ponnampalam, V., & Heath, R. W. (2021). Optimizing coverage and capacity in cellular networks using machine learning. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2021-June, 8138–8142. https://doi.org/10.1109/ICASSP39728.2021.9414155

El-Aziz, L. A., Amr, E., Yehia, H., Mostfa, H., Hisham, M., Shenawy, A., Khattab, A., Taha, A., & El-Akel, H. (2020). Cell Outage Detection and Degradation Classification Based on Alarms and KPI’s Correlation. 2nd Novel Intelligent and Leading Emerging Sciences Conference, NILES 2020, 230–235. https://doi.org/10.1109/NILES50944.2020.9257920

Fernandes, D., Soares, G., Clemente, D., Cortesao, R., Sebastiao, P., Cercas, F., Dinis, R., & Ferreira, L. S. (2019). Combining measurements and propagation models for estimation of coverage in wireless networks. IEEE Vehicular Technology Conference, 2019-Septe, 0–4. https://doi.org/10.1109/VTCFall.2019.8891451

Galadanci, G. S. M., & Abdullahi, S. B. (2018). Performance Analysis of GSM Networks in Kano Metropolis of Nigeria. American Journal of Engineering Research (AJER, 7, 69–79.

Harahap, P., Pasaribu, F. I., & Siregar, C. A. (2021). Network Quality Comparison 4g LTE X and y in Campus UMSU. Journal of Physics: Conference Series, 1858(1). https://doi.org/10.1088/1742-6596/1858/1/012010

Hasan, M. M., Kwon, S., & Na, J. H. (2018). Adaptive mobility load balancing algorithm for LTE small-cell networks. IEEE Transactions on Wireless Communications, 17(4), 2205–2217. https://doi.org/10.1109/TWC.2018.2789902

Hasan, S. O., & Abdullah, S. S. (2020). Path loss estimation for some korek-telecom sites operating at (1.8) GHz and (2.1) GHz for Urban and Suburban Area in Erbil City. Advances in Science, Technology and Engineering Systems, 5(5), 869–875. https://doi.org/10.25046/AJ0505106

Imoize, A. L., & Ogunfuwa, T. E. (2019). Propagation Measurements of a 4G LTE Network in Lagoon Environment. Nigerian Journal of Technological Development, 16(1), 1–9. https://doi.org/10.4314/njtd.v16i1.1

Imoize, A. L., Orolu, K., & Atayero, A. A. A. (2020). Analysis of key performance indicators of a 4G LTE network based on experimental data obtained from a densely populated smart city. Data in Brief, 29, 105304. https://doi.org/10.1016/j.dib.2020.105304

Kasi, S. K., Kasi, M. K., Ali, K., Raza, M., Afzal, H., Lasebae, A., Naeem, B., Islam, S. U., & Rodrigues, J. J. P. C. (2021). Heuristic Edge Server Placement in Industrial Internet of Things and Cellular Networks. IEEE Internet of Things Journal, 8(13), 10308–10317. https://doi.org/10.1109/JIOT.2020.3041805

Khamidehi, B., & Sousa, E. S. (2021). Trajectory Design for the Aerial Base Stations to Improve Cellular Network Performance. IEEE Transactions on Vehicular Technology, 70(1), 945–956. https://doi.org/10.1109/TVT.2021.3049367

Khlass, A., Laselva, D., & Jarvela, R. (2019). On the flexible and performance-enhanced radio resource control for 5G NR networks. IEEE Vehicular Technology Conference, 2019-September, 1–6. https://doi.org/10.1109/VTCFall.2019.8891551

Kulba, V., & Somov, S. (2021). Data Replication in Ad-Hoc Mobile Networks MANET. Proceedings of 2021 14th International Conference Management of Large-Scale System Development, MLSD 2021, 1–5. https://doi.org/10.1109/MLSD52249.2021.9600240

Li, F., Niaki, A. A., Choffnes, D., Gill, P., & Mislove, A. (2019). A large-scale analysis of deployed traffic differentiation practices. SIGCOMM 2019 - Proceedings of the 2019 Conference of the ACM Special Interest Group on Data Communication, 130–144. https://doi.org/10.1145/3341302.3342092

Loh, F., Wamser, F., Poignée, F., Geißler, S., & Hoßfeld, T. (2022). YouTube Dataset on Mobile Streaming for Internet Traffic Modeling and Streaming Analysis. Scientific Data, 9(1), 1–12. https://doi.org/10.1038/s41597-022-01418-y

Motlagh, N. H., Kapoor, S., Alhalaseh, R., Tarkoma, S., & Hatonen, K. (2022). Quality of Monitoring for Cellular Networks. IEEE Transactions on Network and Service Management, 19(1), 381–391. https://doi.org/10.1109/TNSM.2021.3112467

Nestic, S., Lampón, J. F., Aleksic, A., Cabanelas, P., & Tadic, D. (2019). Ranking manufacturing processes from the quality management perspective in the automotiv industry. Expert Systems, 36(6), 1–16. https://doi.org/10.1111/exsy.12451

Of, M., & Education, H. (n.d.). Optimization Handover in Deep Learning within LTE Academic year?: 2018 / 2019 Acknowledgments.

Pinem, M., Rahma, F., Rambe, A. H., Adilah, N., Hendri, & Munthe, Y. (2022). Estimation of Path Loss Propagation Model on Homogeneous Vegetation for 2100 MHz Mobile Communication Networks. Proceeding - ELTICOM 2022: 6th International Conference on Electrical, Telecommunication and Computer Engineering 2022, 106–110. https://doi.org/10.1109/ELTICOM57747.2022.10038023

Polese, M., Jornet, J. M., Melodia, T., & Zorzi, M. (2020). Toward End-to-End, Full-Stack 6G Terahertz Networks. IEEE Communications Magazine, 58(11), 48–54. https://doi.org/10.1109/MCOM.001.2000224

Radovanovi?, D., Holst, C., Banerjee Belur, S., Srivastava, R., Vivien Houngbonon, G., Le Quentrec, E., Miliza, J., Winkler, A. S., & Noll, J. (2020). Digital literacy key performance indicators for sustainable development. Social Inclusion, 8(2), 151–167. https://doi.org/10.17645/si.v8i2.2587

Suprapto, A., & Sasongko, D. (2021). Evaluasi Performa Website Berdasarkan Pengujian Beban Dan Stress Menggunakan Loadimpact (Studi Kasus Website Iain Salatiga). Network Engineering Research Operation, 6(1), 31. https://doi.org/10.21107/nero.v6i1.198

Tayyab, M., Gelabert, X., & Jantti, R. (2019). A Survey on Handover Management: From LTE to NR. IEEE Access, 7(1), 118907–118930. https://doi.org/10.1109/ACCESS.2019.2937405

Waheed, Z., Kamboh, U. R., Shehzad, M. N., Taqdees, M. D., Usman, M., & Fatima, A. (2021). Measurements of Deterministic Propagation Models Through Field Assessments for Long-Term Evaluation. 4th International Conference on Innovative Computing, ICIC 2021, Icic, 1–6. https://doi.org/10.1109/ICIC53490.2021.9693000

Xu, H., Li, D., Liu, M., Han, G., Huang, W., & Xu, C. (2020). QoE-Driven Intelligent Handover for User-Centric Mobile Satellite Networks. IEEE Transactions on Vehicular Technology, 69(9), 10127–10139. https://doi.org/10.1109/TVT.2020.3000908

Downloads

ARTICLE Published HISTORY

Submitted Date: 2023-12-16
Accepted Date: 2023-12-16
Published Date: 2024-01-15

How to Cite

Yuhanef, A., Zurnawita, Pratiwi, N., & Setiawan, H. (2024). Analysis of Base Station Replacement Using the Cost-231 Propagation Model and Stanford University Interim (SUI) on the LTE Network in Pauh District, Padang. Journal of Computer Networks, Architecture and High Performance Computing, 6(1), 237-259. https://doi.org/10.47709/cnahpc.v6i1.3331