Application of the Single Exponential Smoothing Method For Flood Disaster Prediction
DOI:
10.47709/cnahpc.v5i2.2455Keywords:
Application; flood; prediction; rainfall data; single exponential smoothingDimension Badge Record
Abstract
The country of Indonesia is seen as one that is particularly vulnerable to natural catastrophes as well as calamities brought on by human activity. A disaster that may be brought on by both natural and human sources is a flood. Disasters brought on by flooding are unpredictable occurrences that frequently cause losses in the form of property damage, the theft of assets, and lost productivity at work and in school. Through this prediction information system, the people can find out the level of risk of flooding through excessive rainfall. in order to better anticipate and prepare for all possibilities that occur before the flood, the method used is Single Exponential Smoothing. This method was chosen because of the simple way the system works to find predictive values ??through past data. With this system, researchers can input rainfall data taken from the Meteorology, Climatology and Geophysics Agency, then the data is processed through the system and if rainfall gets high results. The risk of flooding will also be very high and a warning will be given to the public so that better prepared for the risk of flooding. The results obtained from this study are the results of an analysis of the exponential method single to obtain accurate rainfall prediction information with data MAD, MSE and MAPE.
Downloads
Abstract viewed = 44 times
References
Abdurrahman, M., Irawan, B., & Latuconsina, R. (2017). Flood Forecasting using Holt-Winters Exponential Smoothing Method and Geographic Information System. ICCREC 2017 - 2017 International Conference on Control, Electronics, Renewable Energy, and Communications, Proceedings, 2017-January, 159–163. https://doi.org/10.1109/ICCEREC.2017.8226704
Al Hanif, F. (2011). Analisis & Perancangan Sistem Informasi. Yogyakarta: Andi, 2007. Jurnal Teknologi Informasi DINAMIK.
Anjani, R. P., Prianto, C., & Saputra, M. H. K. (2020). Buku Laporan Forecasting Inbound Dan Outbound Menggunakan Single Exponential Smoothing Dan MAPE. In Kreatif Industri Nusantara.
Arikunto, S. (2002). Metodologi Penelitian Suatu Pendekatan Proposal. 2017.
Hansun, S., & Kristanda, M. B. (2019). Central Jakarta Rainfall Intensity Forecast using Single Exponential Smoothing. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 2105–2108. https://doi.org/10.35940/ijrte.d7681.118419
Keum, H. J., Han, K. Y., & Kim, H. Il. (2020). Real-Time Flood Disaster Prediction System by Applying Machine Learning Technique. KSCE Journal of Civil Engineering, 24(9), 2835–2848. https://doi.org/10.1007/s12205-020-1677-7
Nurhayati, N., Mulyati, S., & Putra, D. P. (2021). RANCANG BANGUN SISTEM INFORMASI KELAYAKAN BANTUAN SOSIAL COVID 19 BERBASIS WEB DI DESA TAPOS. Jurnal Teknik. https://doi.org/10.31000/jt.v10i1.4121
Nurrijal, M. A., Helen, A., & Abdullah, A. S. (2021). Web-based geographic information system for flood disaster using spatial autoregressive method. Journal of Physics: Conference Series, 1722(1). https://doi.org/10.1088/1742-6596/1722/1/012006
Pascapraharastyan, A. rizki, Supriyanto, A., & Sudarmaningtyas, P. (2014). Rancang Bangun Sistem Informasi Manajemen Arsip Rumah Sakit Bedah Surabaya Berbasis Web. Sistem Informasi.
Sari, N. N. K., Widiatry, W., & Putra, P. B. A. A. (2020). Sistem Informasi Kepegawaian UPT Kesatuan Pengelolaan Hutan Produksi Kapuas Tengah UNIT XI. Jurnal Informatika. https://doi.org/10.31294/ji.v7i2.7935
Sherrell, L. (2013). Waterfall Model. In Encyclopedia of Sciences and Religions. https://doi.org/10.1007/978-1-4020-8265-8_200285
Sinay, L. J., Pentury, T., & Anakotta, D. (2017). PERAMALAN CURAH HUJAN DI KOTA AMBON MENGGUNAKAN METODE HOLT-WINTERS EXPONENTIAL SMOOTHING. BAREKENG: Jurnal Ilmu Matematika Dan Terapan. https://doi.org/10.30598/barekengvol11iss2pp101-108
Suripin. (2004). Drainase. Sistem Drainase Perkotaan Yang Berkelanjutan.
Taufik, M., & Rahman, I. W. (2020). PEMETAAN DAERAH RAWAN BANJIR (STUDI KASUS: BANJIR PACITAN DESEMBER 2017). Geoid. https://doi.org/10.12962/j24423998.v15i1.3870
Windiastik, S. P., Ardhana, E. N., & Triono, J. (2019). PERANCANGAN SISTEM PENDETEKSI BANJIR BERBASIS IOT (INTERNET OF THING). Seminar Nasional Sistem Informasi (SENASIF).
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2023 Sukardi, Anisa Yulandari Anisa, Sri Khaerawati Nur Herha

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.