Implementation of ColorSpace, GrabCut, and Watershed Methods on Digital Image Segmentation of Coral and Fish Objects
DOI:
10.47709/cnahpc.v5i1.2012Keywords:
image processing, color space segmentation, grabcut segmentation, watershed segmentationDimension Badge
Abstract
Poor coral reefs rising in eastern Indonesia. The colors have disappeared from the seafloor instead, bleached branches are visible. To recognize the differences between dead and healthy coral reefs, an identification system has been created using the image processing method. Object segmentation is a step in digital image processing to separate one object from another based on specific characteristics. In this study, coral objects with various colored backgrounds and things became a problem to separate, so this study aimed to separate these various colors. This research uses color space segmentation to visualize RGB and HSV colors, Grabcut segmentation to separate the largest corals, and watershed segmentation to separate dead corals. Therefore, from this study, the RGB and HSV color visualizations were clearly visible. From Grabcut segmentation, it is found that the largest fish is detected and can be displayed in the segmentation results. At the same time, the watershed segmentation displays dead coral taken by gray segmentation with otsu.
Downloads
Abstract viewed = 121 times
References
Abdul Kadir, & A. S. (2013). Teori dan Aplikasi Pengolahan Citra. Andi.
Achanya, T, & Ray, K. (2005). Image Processing Principles and Applications. Jhon Wiley & Sons, Inc.
Agoston, M. K. (2005). Computer Graphics and Geometric Modeling Implementation and Algorithms. Springer-Verlag.
Ambarwati, A., Passarella, R., & Sutarno. (2016). Segmentasi Citra Digital Menggunakan Thresholding Otsu untuk Analisa Perbandingan Deteksi Tepi. Annual Research Seminar 2016, 2(1), 216–226.
Dewi, T. (2007). Matinya Terumbu Karang. LIPI. http://lipi.go.id/berita/matinya-terumbu-karang/1338
Kadir, A. (2018). Dasar pemrograman python 3?: panduan untuk mempelajari python dengan cepat dan mudah bagi pemula (Maya (ed.)). Andi.
Kadir, A. (2019). Langkah Mudah Pemrograman OpenCV & Python. Gramedia. https://doi.org/719051502
Luthfi, O. M., Isdianto, A., Sirait, A. P. R., Putranto, T. W., & Affandi, M. (2020). Ekologi Terumbu Karang Buatan Pantai Damas. Envirobiotechjournals. https://news.unair.ac.id/2021/12/29/ekologi-terumbu-karang-buatan-pantai-damas/?lang=id
Maria, E., Yulianto, Y., Arinda, Y. P., Jumiaty, J., & Nobel, P. (2018). Segmentasi Citra Digital Bentuk Daun Pada Tanaman Di Politani Samarinda Menggunakan Metode Thresholding. Jurnal Rekayasa Teknologi Informasi (JURTI), 2(1), 37. https://doi.org/10.30872/jurti.v2i1.1377
Rindengan, A. J., & Mananohas, M. (2017). Perancangan Sistem Penentuan Tingkat Kesegaran Ikan Cakalang Menggunakan Metode Curve Fitting Berbasis Citra Digital Mata Ikan. Jurnal Ilmiah Sains, 17(2), 161. https://doi.org/10.35799/jis.17.2.2017.18128
Syafi’i, S. I., Wahyuningrum, R. T., & Muntasa, A. (2016). Segmentasi Obyek Pada Citra Digital Menggunakan Metode Otsu Thresholding. Jurnal Informatika, 13(1), 1–8. https://doi.org/10.9744/informatika.13.1.1-8
Tri Utami, A. (2017). Implementasi Metode Otsu Thresholding untuk Segmentasi Citra Daun. Fakultas Komunikasi Dan Informatika Universitas Muhammadiyah Surakarta.
Voronkov, I. (n.d.). ?2016-11-23?Object Detection Using Image Processing.pdf. 1–6.
Yunus, M. (2019). Perbandingan Metode-Metode Edge Detection Untuk Proses Segementasi Citra Digital. Jurnal Teknologi Informasi, Vol. 3(02), 146–160.
Zulkhaidi, T. C. A.-S., Maria, E., & Yulianto, Y. (2020). Pengenalan Pola Bentuk Wajah dengan OpenCV. Jurnal Rekayasa Teknologi Informasi (JURTI), 3(2), 181. https://doi.org/10.30872/jurti.v3i2.4033
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2022 Aditya Ahmad Fauzi, Adisaputra

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.