ac

Forecasting the Number of Patient Visits by Arima and Holwinters Method at the Public Health Center

Authors

  • Ilham Basri K Institut Teknolgi dan Bisnis Ahmad Dahlan Lamongan
  • David Fahmi Abdillah Institut Teknologi dan Bisnis Ahmad Dahlan Lamongan
  • Titik Khotiah Institut Teknologi dan Bisnis Ahmad Dahlan Lamongan
  • Jumain Institut Teknologi dan Bisnis Ahmad Dahlan Lamongan
  • Abdul Rohman Institut Teknologi dan Bisnis Ahmad Dahlan Lamongan

DOI:

10.47709/cnahpc.v5i1.2008

Keywords:

Arima, Holtwinters, Peramalan, Forecasting, Direct Patient Visits, Referral Patient Visits, MAPE

Dimension Badge



Abstract

As the number of human populations increases and the economy becomes more advanced, people's awareness of health increases. This can increase the number of patient visits if the community will visit for treatment, therefore it is necessary to pay special attention from the health center to carry out readiness in the fulfillment of facilities and service support equipment, such as services in the outpatient registration place where registration documents must be adjusted to the number of existing patients, if the documents are lacking or have not been made, there can be long queues or accumulation of patients which leads to inadequate service. For this reason, the public health center must carry out careful planning activities, one of which is by conducting forecasting activities in order to overcome these problems.This study compares the best method among the 2 time series methods, then the forecasting results will be compared with the actual data to find which forecasting is the best.The final results showed the MAPE value of the arima method for Direct Patient Visits data was worth 22.55% while the Referral Patient Visits were valued at 47.40% with the Moderate/Feasible category, the Holwinters method for Direct Patient Visits data was worth 7.90% while the Referral Patient Visits were worth 11.90% with the excellent category.can be said that the smallest error value is Holtwinters from Direct Patient Visit data with MAPE 7.90% and from Referral Patient Visit data with MAPE 11.90%. Which is where it is said to be an excellent forecasting category

Downloads

Download data is not yet available.
Google Scholar Cite Analysis
Abstract viewed = 62 times

References

Darmawan, D. S., Nugraha, A. T., & Wahyudi, R. (2022). Peramalan Deret Berkala dalam Mengurangi Bullwhip Effect pada Sistem Rantai Pasok Komoditas Sawit pada PTPN VII , Lampung , Indonesia ( Forecasting Periodic Series to Reduce the Bullwhip Effect in Palm Oil Commodity Supply Chain System in PTPN VII , Lampu. 5(2), 331–341.

Febriyanti, A. N., Azizah, N., Rifai, K., Statistika, P., Matematika, F., & Alam, P. (2019). Metode Triple Exponential Smoothing Holt-Winters untuk Peramalan Jumlah Penumpang Kereta Api di Pulau Jawa. 152–158.

Fiqih Akbari, Ikhwanul Muslimin, 2018. (2018). Optimasi Parameter Pemulusan Algoritma Brown Menggunakan Metode. 2(1), 307–314.

Harini, D., & Wahyuniar, L. S. (2021). Estimasi Jumlah Murid Baru Menggunakan Metode Forecasting. 2, 64–70. https://doi.org/10.37640/jim.v2i2.1025

Ika Oktavianti, 2021. (2021). JURNAL RESTI Analisis Pola Prediksi Data Time Series menggunakan Support Vector. 1(10), 282–287.

Ilham 2019. (n.d.). Comparison of Forecasting the Number of Outpatients Visitors Based on Naïve Method & Exponential Smoothing Comparison of Forecasting the Number of Outpatients Visitors Based on Naïve Method & Exponential Smoothing.

Mahfudhoh, 2020. (2020). Pengaruh Kualitas Pelayanan Terhadap Kepuasan Pasien Pada Rumah Sakit Umum Daerah Kota Cilegon. 8(1), 39–46.

Novitaningsih, 2019. (2019). 1 Analisis Faktor- faktor…, Novitaningsih, Fakultas Ilmu Kesehatan UMP, 2019. 1–5.

Pratama, D. A., Hidayati, S., Suroso, E., & Sartika, D. 2020. (2020). Analisis Peramalan Permintaan dan Pengendalian Persediaan Bahan Baku Pembantu pada Industri Gula ( Studi Kasus PT . XYZ Lampung Utara ) Analysis Forecasting Dem & Control of Supply Raw Materialsi In The Sugar Industry ( Case Study of PT . XYZ North Lampun. 20(2), 148–160.

Razak, M. (2022). JURNAL RESTI A Comparison of the Smoothing Constant Values Among Exponential. 5(158), 4–9.

Sistem, R., Genta, M., Shandi, A., Adhitama, R., & Arifa, A. B. (2021). Penerapan Long Short Term Memory untuk Memprediksi Flight Delay. 1(10), 1–3.

Sistem, R., Mardianto, I., Gunawan, M. I., Sugiarto, D., & Rochman, A. (2021). Perbandingan Peramalan Harga Beras Menggunakan Metode ARIMA pada. 1(10).

Sungkawa, I., & Megasari, R. T. (n.d.). NILAI RAMALAN DATA DERET WAKTU DALAM SELEKSI MODEL PERAMALAN VOLUME PENJUALAN PT SATRIAMANDIRI CITRAMULIA Iwa Sungkawa?; Ries Tri Megasari. 2(2), 636–645.

Yanto, M. (2021). Jurnal resti. 1(10), 1–2.

Zahara, S. (2021). Peramalan Data Indeks Harga Konsumen Berbasis Time Series. 1(10), 24–30.

Downloads

ARTICLE Published HISTORY

Submitted Date: 2023-01-17
Accepted Date: 2023-01-18
Published Date: 2023-01-22

How to Cite

Basri K, I., David Fahmi Abdillah, Titik Khotiah, Jumain, & Abdul Rohman. (2023). Forecasting the Number of Patient Visits by Arima and Holwinters Method at the Public Health Center. Journal of Computer Networks, Architecture and High Performance Computing, 5(1), 75-86. https://doi.org/10.47709/cnahpc.v5i1.2008