Researchers Productivity Level Clustering Based On H-Index and Citation Using The Fuzzy C-Means Algorithm
DOI:
10.47709/cnahpc.v5i1.1984Keywords:
fuzzy c-means, unsupervised, outlier.Dimension Badge
Abstract
The fuzzy C-Means algorithm is a partition-based clustering algorithm.Fuzzy C-Means is very helpful in modeling data whose distribution has outliers. Outliers are where there is a data object that is far apart from the existing clusters. Fuzzy C-Means groups data by minimizing the membership function of a data set. so that each piece of data can be a member of more than one group. In this study, the dataset used was the paper citation vs. H-index dataset in the Kaggle.com repository. This dataset is known to have outliers in fuzzy C-Means and has better performance compared to the K-Means and K-Medoid algorithms in modeling datasets that have outliers.
Downloads
Abstract viewed = 64 times
References
Anindya,A.P.(2009). Penentuan Banyak Kelompok Dalam Fuzzy C-Means Cluster Berdasarkan Proporsi Eigen Value Dari Matriks Similarityseminar Nasional Matematika Dan Pendidikan Matematika. Isbn:978-979-16353-3-2.
Bobby,P &Baso,A.(2019).Implementasi Algoritma Fuzzy C Means Dalam Mengelompokkan Kecamatan Di Tana Luwu Berdasarkan Produktifitas Hasil Perkebunan.Jurnal Matrik.Vol.19.No.1.163-172.e-ISSN:2476-9843.
Erni,R & Luth,F.(2020). Implementasi Fuzzy C-Means Clustering Dalam Pengelompokkan UKM Di Kabupaten Rokan Hulu.Jurnal Techno.Com.Vol.19.No.4.Hal:481-495.
Frank,K & Frank,H.(2003). What Is Fuzzy About Fuzzy Clustering?Understanding And Improving The Concept Of The Fuzzifier. Conference: Advances In Intelligent Data Analysis V, 5th International Symposium On Intelligent Data Analysis, Ida 2003, Berlin, Germany, August 28-30, 2003, Proceedings.
Ignatius,B.R.,Yustina,R.W.U & Teguh Susyanto.(2021).Penerapan Metode Clustering Dengan Fuzzy C-Means Untuk Memetakan Daerah Rawan Kecelakaan Lalu Lintas Di Surakarta. Jurnal Ilmiah Sinus(JIS). Vol.19 .No.2. ISSN(online):2548-4028.
I Made,D.P.,Agus,E.A.W & Sri,A.(2018).Fuzzy C-Means Clustering For Customer Segmentation. International Journal Of Engineering And Emerging Technology.Vol.3.No.1.E-ISSN:2579-597X.
Jauharotul,I.,Diva,A.S.N.M & Dian,C.R.N. (2022).Clustering Daerah Rawan Kriminalitas Menggunakan Algoritma Fuzzy C-Means. Jurnal Ilmiah Informatika Komputer.Vol.27.No.2.
Lina,R., Ahmad,F & Tati,S.(2022).Pengelompokkan Penyandang Masalah Kesejahteraan Sosial Di Jawa Barat Menggunakan K-Means dan Fuzzy C-Means.Jurnal Teknologi Technoscientia.vol.15.no.1.e-ISSN:2714-8025.
Muhammad,E.A.R., Steven & William,T. .(2020).Optimasi Fuzzy C- Means Dan K-Means Menggunakan Algoritma Genetika Untuk Pengklasteran Dataset Diabetic Retinopathy.Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK).Vol.7.No.5.Hal:993-1000.E-ISSN:2528-6579.
Muhammad, Y.R., Fira,F., Agus,P.W.(2020).Implementasi K-Means Clustering Dalam Mengelompokkan Jumlah Penjualan Ikan Laut Di TPI Menurut Wilayah.Jurnal JIKO.Vol.3.No.2.69-74.e-ISSN:2656-1948.
Ming-Chuan,H & Don-Lin,Y.(2001). An Efficient Fuzzy C-Means Clustering Algorithm . Published in: Proceedings 2001 IEEE International Conference on Data Mining. Print ISBN:0-7695-1119-8.
Nanda,N.R., M.Ivan,A.F & Iswanto.(2022).Penentuan Penerima KIP Kuliah Mahasiswa S1 UNUGIRI Menggunakan Fuzzy C-Means Clustering. Jurnal Transformasi. Vol.6. No.2. 121-130. ISSN:2549-1164.
Bedy.(2019).Pengantar Machine Laerning Konsep Dan Praktikum Dengan Contoh Latihan Berbasis R Dan Python.Penerbit:Informatika Bandung. Isbn:978-623-7131-19-9.
Risma,R.R & Mustakim. (2017). Penerapan Algoritma Fuzzy C-Means Untuk Analisis Permasalahan Simpanan Wajib Anggota Koperasi.Jurnal Teknologi Informasi Dan Ilmu Komputer(JTIIK).vol.5.no.2.171-176.e-ISSN:2528-6579.
Suyanto.(2019).data Mining untuk Klasifikasi dan Klasterisasi data edisi revisi.penerbit: Informatika Bandung.ISBN:978-602-6232-97-7.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2022 Mira Orisa, Ahmad Faisol

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.