ac

Classification of Covid-19 vaccine data screening with Naive Bayes algorithm using Knowledge Discovery in database method

Authors

  • Syariful Alam Sekolah Tinggi Teknologi Wastukancana, Indonesia
  • Mochzen Gito Resmi Sekolah Tinggi Teknologi Wastukancana, Indonesia
  • Nunung Masripah Sekolah Tinggi Teknologi Wastukancana, Indonesia

DOI:

10.47709/cnahpc.v4i2.1584

Keywords:

: Covid-19, Vaccination and Naive Bayes.

Dimension Badge Record



Abstract

Acute Respiratory Syndrome Coronavirus-2 (SARS-Cov-2) known as covid-19 was detected and caused a very large number of deaths due to a mysterious respiratory disease. With the death toll continuing to rise, the government was forced to take swift action to break the chain of spread and reduce the number of deaths by taking vaccinations. An adequate vaccine against Covid-19 is expected to vaccinate at least 70% of the population. Therefore, this study was carried out as a step to help break the chain of the spread of the Covid-19 virus, by classifying the Covid-19 vaccine screening data. The research method applied in this study is the Knowledge Discovery in Database (KDD) method, in which there are several processes, namely selection, pre-processing, transformation, data mining, and evaluation. The application of the Naive Bayes method is expected to be able to classify Covid-19 vaccine screening data with vaccine class values, no, and delay. The results of the research on the classification of the Naive Bayes method show that there are 959 data with Vaccine data 695, No 200, and Delay 64. Processed using the Rapidminer application, the accuracy is 96.56%, Precision is 92.46%, and Recall is 92.13%.

Downloads

Download data is not yet available.
Google Scholar Cite Analysis
Abstract viewed = 432 times

References

Asroni, A., Fitri, H., & Prasetyo, E. (2018). Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik). Semesta Teknika, 21(1), 60–64. https://doi.org/10.18196/st.211211

Coding, J., & Untan, S. K. (2018). Kata Kunci: Kebakaran Hutan, Data Mining, K-Nearest Neighbor (KNN), Fire Weather Index(FWI). 1. 06(2).

Dhany, H. W., & Izhari, F. (2019). ANALISIS ALGORITHMS SUPPORT VECTOR MACHINE DENGAN NAIVE BAYES KERNEL PADA KLASIFIKASI DATA. Jurnal Teknik Dan Informatika, 6(2), 30–35. ANALISIS ALGORITHMS SUPPORT VECTOR MACHINE DENGAN NAIVE BAYES KERNEL PADA KLASIFIKASI DATA. Jurnal Teknik Dan Informatika, 6(2), 30–35., 6.

Firdaus, A., Firdaus, W. I., Studi, P., Informatika, T., Digital, M., & Sriwijaya, P. N. (2021). Text Mining. 13(1), 66–78.

Hayuningtyas, R. Y. (2019). Penerapan Algoritma Naïve Bayes untuk Rekomendasi Pakaian Wanita. Jurnal Informatika, 6(1), 18–22. https://doi.org/10.31311/ji.v6i1.4685

Hozairi, H., Anwari, A., & Alim, S. (2021). Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes. Network Engineering Research Operation, 6(2), 133. https://doi.org/10.21107/nero.v6i2.237

Liliana, D. Y., Maulana, H., & Setiawan, A. (2021). Data Mining untuk Prediksi Status Pasien Covid-19 dengan Pengklasifikasi Naïve Bayes. Multinetics, 7(1), 48–53. https://doi.org/10.32722/multinetics.v7i1.3786

Luluk Elvitaria, M. H. (2017). Smk Analisis Kesehatan Abdurrab Menggunakan Algoritma. (Jurnal Teknologi Dan Sistem Informasi Univrab, 2(2), 220–233.

Manalu, E., Sianturi, F. A., & Manalu, M. R. (2017). Penerapan Algoritma Naive Bayes Untuk Memprediksi Jumlah Produksi Barang Berdasarkan Data Persediaan dan Jumlah Pemesanan Pada CV. Papadan Mama Pastries. Jurnal Mantik Penusa, 1(2), 16–21. https://ezp.lib.unimelb.edu.au/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=ffh&AN=2008-10-Aa4022&site=eds-live&scope=site

NCDC. (2021). COVID-19 Situation Report: Situation Report 95. In Nigeria Centre for Disease Control (Vol. 95, Issue June). https://ncdc.gov.ng/themes/common/files/sitreps/fe61a5d7bba46e835a7f6d09bd5343c8.pdf

Sartika, D., & Indra, D. (2017). Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian. Jurnal Teknik Informatika Dan Sistem Informasi, 1(2), 151–161.

Subagyo, I., Yulianto, L. D., Permadi, W., & Dewantara, A. W. (n.d.). Sentiment Analisis Review Film Di IMDB Menggunakan Algoritma SVM Sentiment Analysis of Film Review at IMDB using SVM algorithm Abstrak Pendahuluan Metode Penelitian. 8(1), 47–56.

Titimeidara, M. Y., & Hadikurniawati, W. (2021). Implementasi Metode Naïve Bayes Classifier Untuk Klasifikasi Status Gizi Stunting Pada Balita. Jurnal Ilmiah Informatika, 9(01), 54–59. https://doi.org/10.33884/jif.v9i01.3741

Watratan, A. F., & Moeis, D. (2020). Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia. Journal of Applied Computer Science and Technology, 1(1), 7-14.

Wibawa, A. P., Purnama, M. G. A., Akbar, M. F., & Dwiyanto, F. A. (2018). Metode-metode Klasifikasi. In Prosiding Seminar Ilmu Komputer dan Teknologi Informasi Vol (Vol. 3, No. 1)

Downloads

ARTICLE Published HISTORY

Submitted Date: 2022-06-28
Accepted Date: 2022-07-04
Published Date: 2022-07-31

How to Cite

Alam, S. ., Resmi, M. G., & Masripah, N. . (2022). Classification of Covid-19 vaccine data screening with Naive Bayes algorithm using Knowledge Discovery in database method. Journal of Computer Networks, Architecture and High Performance Computing, 4(2), 177-185. https://doi.org/10.47709/cnahpc.v4i2.1584