Evaluation of ATM Location Placement Using the K-Means Clustering in BNI Denpasar Regional Office
DOI:
10.47709/cnahpc.v4i2.1580Keywords:
ATMs, BNI, Clustering, K-Means, StrategicDimension Badge Record
Abstract
The existence of an ATM location requires a placement evaluation that aims to support business and provide convenience and comfort to customers when using or transacting. This study aims to evaluate the placement of ATM locations using the K-Means method, and research using data obtained from data mining to obtain decisions that lead to not strategic, strategic, and very strategic ATM locations. This study uses data sourced from the BNI ATM database and performance data in one semester or six months, namely January to June 2021, as many as 121 ATM locations spread across the island of Bali. The application of the K-Means Algorithm in this study uses 6 clustering criteria, namely ATMs Usage, ATMs Fee-Based Income/ FBI, ATMs Service Level Agreement/ SLA, ATMs distance, competitor ATMs, and Business Distance. In addition to presenting calculations using spreadsheets, this research also produces implementations in web-based software. The results of alternative classifications based on K-Means on very strategic centroids of 27 locations or covering 22.31%, strategic several 77 locations or covering 63.64%, and non-strategic 17 locations or covering 14.05%. Although the location of ATMs that are classified as non-strategic criteria is quite small, this can be optimized by several strategic steps that can be taken by stakeholders within the company, such as evaluating the bank's business plan in 2022 and improving the supervision of machines at ATM locations.
Downloads
Abstract viewed = 297 times
References
G. S. Mahendra and K. Y. E. Aryanto, “SPK Penentuan Lokasi ATM Menggunakan Metode AHP dan SAW,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 5, no. 1, pp. 49–56, 2019, doi: 10.25077/TEKNOSI.v5i1.2019.49-56.
G. S. Mahendra and I. P. Y. Indrawan, “Metode AHP-TOPSIS Pada Sistem Pendukung Keputusan Penentuan Penempatan Atm,” JST (Jurnal Sains dan Teknologi), vol. 9, no. 2, pp. 130–142, 2020, doi: 10.23887/jst-undiksha.v9i2.24592.
G. S. Mahendra and I. G. B. Subawa, “Perancangan Metode AHP-WASPAS Pada Sistem Pendukung Keputusan Penempatan ATM,” Prosiding Seminar Nasional Pendidikan Teknik Informatika (SENAPATI) Ke-10, vol. 1, no. 1, pp. 122–128, 2019.
R. J. Kasim, S. Bahri, and S. Amir, “Implementasi Metode K-Means Untuk Clustering Data Penduduk Miskin Dengan Systematic Random Sampling,” in Prosiding Seminar Nasional Sistem Informasi dan Teknologi, Sep. 2021, vol. 5, pp. 95–101. Accessed: Jun. 08, 2022. [Online]. Available: http://seminar.iaii.or.id/index.php/SISFOTEK/article/view/265
S. Halawa and R. Hamdani, “Implementation of the K-Means Clustering Method in Data Grouping Sales In Asia Africa Dentures Dental,” CNAPC, vol. 2, no. 2, pp. 286–291, Dec. 2019, doi: 10.47709/cnapc.v2i2.431.
J. Kusanti and D. Sutanto, “Combination of Decision Tree and K-Means Clustering Methods for Decision Making of BLT Recipients in the Covid-19 Period,” CNAHPC, vol. 3, no. 1, pp. 80–88, Mar. 2021, doi: 10.47709/cnahpc.v3i1.937.
H. Pandiangan, “Penerapan Data Mining Dalam Clustering Produksi Daging Sapi Di Indonesia Menggunakan Algoritma K-Means,” CNAPC, vol. 1, no. 2, pp. 37–44, Jul. 2019, doi: 10.47709/cnapc.v1i2.239.
C. A. Sugianto and T. P. O. R. Bokings, “K-Means Algorithm For Clustering Poverty Data in Bangka Belitung Island Province,” CNAHPC, vol. 3, no. 1, pp. 58–67, Feb. 2021, doi: 10.47709/cnahpc.v3i1.934.
G. S. Reddy and D. C. Suneetha, “A Review of Data Warehouses Multidimensional Model and Data Mining,” Information Technology in Industry, vol. 9, no. 3, pp. 310–320, 2021.
S. Chakraborty, S. H. Islam, and D. Samanta, Data Classification and Incremental Clustering in Data Mining and Machine Learning. Springer, 2022. doi: 10.1007/978-3-030-93088-2.
A. Hicham, A. Jeghal, A. Sabri, and H. Tairi, “A Survey on Educational Data Mining [2014-2019],” in 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), 2020, pp. 1–6. doi: 10.1109/ISCV49265.2020.9204013.
H. Lisnawati and A. Sinaga, “Data Mining with Associated Methods to Predict Consumer Purchasing Patterns,” IJMECS, vol. 12, no. 5, pp. 16–28, Oct. 2020, doi: 10.5815/ijmecs.2020.05.02.
L. F. Zhu, J. S. Wang, and H. Y. Wang, “A Novel Clustering Validity Function of FCM Clustering Algorithm,” IEEE Access, vol. 7, pp. 152289–152315, 2019, doi: 10.1109/ACCESS.2019.2946599.
J. Petrus, Ermatita, and Sukemi, “Soft and Hard Clustering for Abstract Scientific Paper in Indonesian,” in 2019 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 2019, pp. 131–136. doi: 10.1109/ICIMCIS48181.2019.8985231.
Yusmartato et al., “Grouping 2 Hour Load Data Substation Using Hierarchical Clustering,” J. Phys.: Conf. Ser., vol. 1363, no. 1, p. 012083, Nov. 2019, doi: 10.1088/1742-6596/1363/1/012083.
L. A. Rasyid and S. Andayani, “Review on Clustering Algorithms Based on Data Type: Towards the Method for Data Combined of Numeric-Fuzzy Linguistics,” J. Phys.: Conf. Ser., vol. 1097, p. 012082, Sep. 2018, doi: 10.1088/1742-6596/1097/1/012082.
A. A. Aldino, D. Darwis, A. T. Prastowo, and C. Sujana, “Implementation of K-Means Algorithm for Clustering Corn Planting Feasibility Area in South Lampung Regency,” J. Phys.: Conf. Ser., vol. 1751, no. 1, p. 012038, Jan. 2021, doi: 10.1088/1742-6596/1751/1/012038.
M. Khatami and I. K. G. Suhartana, “Voice Classification Based on Gender Using Backpropagation and K-Means Clustering Algorithm,” vol. 8, no. 3, p. 7, 2020.
I. H. Rifa, H. Pratiwi, and R. Respatiwulan, “Clustering of Earthquake Risk in Indonesia Using K-Medoids and K-Means Algorithms,” Medstat, vol. 13, no. 2, pp. 194–205, Dec. 2020, doi: 10.14710/medstat.13.2.194-205.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2022 I Putu Suwirya, I Made Candiasa, Gede Rasben Dantes
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.