Recognition of Regional Traditional House in Indonesia Using Convolutional Neural Network (CNN) Method
DOI:
10.47709/cnahpc.v4i2.1562Keywords:
CNN, traditional house, k-fold cross validation, Keras framework, KDDDimension Badge Record
Abstract
Indonesia is a country that has a lot of cultural diversity. This cultural diversity needs to be preserved. If this is not done, the culture that is owned by Indonesia can slowly disappear. The reduction in cultural values can also reduce the sense of belonging to the culture. This lack of sense of ownership makes it easy for other nations to make claims on the culture that is owned by Indonesia. Indonesia will lose its characteristics as a country that has a lot of cultural diversity. One of the efforts to preserve culture is to recognize the characteristics of each culture and be able to recognize the differences between one culture and another. For example, recognizing traditional houses from various ethnic groups based on their image. In this research, the image classification of the characteristics of traditional houses from several ethnic groups in Indonesia was carried out. The classification used to identify an image. In this study, deep learning techniques are used with the Convolutional Neural Network (CNN) algorithm and Keras framework. This CNN use several layers namely convolutional, pooling, flatten, and dense layer. The development of deep learning models uses the Knowledge Discovery in Database (KDD) method. This method consists of nine stages. The built model is evaluated using k-fold cross validation with a k value of 5 and produces an average accuracy of 80%. This shows that the model built is capable of classifying well. The built model is evaluated with 3 different epoch values, namely 50, 75, and 100. The larger the epoch value used, the greater the accuracy value. The model built is also able to make predictions with an accuracy of 80%.
Downloads
Abstract viewed = 526 times
References
Abdulgani, T., & Sati, B. P. (2019). Pengenalan Rumah Adat Indonesia Menggunakan Teknologi Augmented Reality Dengan Metode Marker Based Tracking Sebagai Media Pembelajaran. Media Jurnal Informatika, 11(1), 43–50.
Alwanda, M. R., Ramadhan, R. P. K., & Alamsyah, D. (2020). Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle. Jurnal Algoritme, 1(1), 45–56.
Aprianto, K. (2021). Brain Tumors Detection By Using Convolutional Neural Networks and Selection of Thresholds By Histogram Selection. Jurnal Ilmu Komputer Dan Informasi (Journal of Computer Science and Information), 14(2), 83–89.
Azis, F. A., Suhaimi, H., & Abas, E. (2020). Waste Classification using Convolutional Neural Network. Proceedings of the 2020 2nd International Conference on Information Technology and Computer Communications (ITCC), 9–13.
Bendersky, E. (2016). The Softmax function and its derivative. Eli Bendersky. https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
Biswas, A., & Islam, M. S. (2021). An Efficient CNN Model for Automated Digital Handwritten Digit Classification. Journal of Information Systems Engineering and Business Intelligence, 7(1), 42–55.
BPS. (2015). Mengulik Data Suku di Indonesia. BPS. https://www.bps.go.id/news/2015/11/18/127/mengulik-data-suku-di-indonesia.html
Chauhan, K., & Ram, S. (2018). Image Classification with Deep Learning and Comparison between Different Convolutional Neural Network Structures using Tensorflow and Keras. International Journal of Advance Engineering and Research Development, 5(2), 533–538.
Farayola, M., & Dureja, A. (2020). A Proposed Framework: Face Recognition With Deep Learning. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, 9(7), 1–6.
Fauziah. (2022). Identification of Pepper Image Using Convolutional Neural Network (CNN) Deep Learning Method. Jurnal Mantik, 5(4), 2298–2304.
Gustientiedinaa, Adiyaa, M. H., & Desnelita, Y. (2019). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru. Jurnal Nasional Teknologi Dan Sistem Informasi, 5(1), 17–24.
Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31, 685–695.
Kingma, D. P., & Ba, J. L. (2015). ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION. 3rd International Conference for Learning Representations.
Kohsasih, K. L., Rizky, M. D. A., Tasya, F., Wijaya, V., & Rosnelly, R. (2021). ANALISIS PERBANDINGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK DAN ALGORITMA MULTI-LAYER PERCEPTRON NEURAL DALAM KLASIFIKASI CITRA SAMPAH. Jurnal TIMES, X(2), 22–28.
Muniasamy, A., & Alasiry, A. (2020). Deep Learning: The Impact on Future eLearning. International Journal of Emerging Technologies in Learning (IJET), 15(1), 188–199.
Pangestu, R. A., Rahmat, B., & Anggraeny, F. T. (2020). IMPLEMENTASI ALGORITMA CNN UNTUK KLASIFIKASI CITRA LAHAN DAN PERHITUNGAN LUAS. Jurnal Informatika Dan Sistem Informasi (JIFoSI), 1(1), 166–174.
Peryanto, A., Yudhana, A., & Umar, R. (2020). Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation. Journal of Applied Informatics and Computing (JAIC), 4(1), 45–51.
Pratiwi, H. A., Cahyanti, M., & Lamsani, M. (2021). IMPLEMENTASI DEEP LEARNING FLOWER SCANNER MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK. Sebatik, 25(1), 124–130.
Radikto, Mulyana, D. I., Ainur, M. R., & Zakaria, M. O. Z. (2022). Klasifikasi Kendaraan pada Jalan Raya menggunakan Algoritma Convolutional Neural Network ( CNN ). Jurnal Pendidikan Tambusai, 6(1), 1668–1679.
Rokach, L., & Maimon, O. (2015). Data Mining with Decision Trees: Theory and Applications 2nd Ed. In Singapore. World Scientific Publishing Co.
Safhi, H. M., Frikh, B., & Ouhbi, B. (2019). Assessing reliability of Big Data Knowledge Discovery process. Procedia Computer Science, 148, 30–36.
Siddiqui, N., Khan, A., Islam, S., & Ali, R. (2019). Deep Learning Models and Applications: A Review. Asian Journal of Convergence in Technology, V(I).
Silitonga, P. D., Gultom, D., & Morina, I. S. (2020). Pengenalan Rumah Adat Sumatera Utara Menggunakan Augmented Rality Berbasis Android. Jurnal ICT?: Information Communication & Technology, 20(2), 82–86.
Sunny, M. S. H., Roy, D., Hossain, S., & Faruque, H. M. R. (2019). Design of a Convolutional Neural Network Based Smart Waste Disposal System. 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT).
Yuliani, E., Aini, A. N., & Khasanah, C. U. (2019). Perbandingan Jumlah Epoch Dan Steps Per Epoch Pada Convolutional Neural Network Untuk Meningkatkan Akurasi Dalam Klasifikasi Gambar. Jurnal INFORMA Politeknik Indonusa Surakarta, 5(3), 23–27.
Yusuf, A., Wihandika, R. C., & Dewi, C. (2019). Klasifikasi Emosi Berdasarkan Ciri Wajah Menggunakan Convolutional Neural Network. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(11).
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2022 Meriska Defriani, Irsan Jaelani
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.