Comparison of Evaluation Image Segmentation Metrics on Sasirangan Fabric Pattern
DOI:
10.47709/cnahpc.v4i2.1479Keywords:
Segmentation, Sasirangan, Pattern, Image, ClusterDimension Badge Record
Abstract
Sasirangan fabric is a typical fabric from the South Kalimantan area. Sasirangan fabric patterns or motifs have a unique archetype that is different from other typical fabrics in Indonesia. The design of Sasirangan fabric is formed from the process of juju or seam. The pattern of Sasirangan fabric that has this uniqueness can be segmented into a more meaningful shape so that it is easy to analyze. The image segmentation that will be tested is the basic pattern of Sasirangan fabric with a random sample to compare the results of the evaluation of the metric evaluation of the image segmentation process from the Sasirangan fabric pattern. Image segmentation is a different segmentation with certain characteristics, namely using the compact watershed approach, canny filter, and morphological geodesic active contours method in the evaluation of image segmentation metrics using precision-recall, which serves to evaluate the quality of the classifier's output. After the image segmentation process is evaluated, the Sasirangan fabric pattern is grouped using the K-means algorithm as a different labelling strategy. This labelling process uses the K-means algorithm to better match details but can be unstable because it relies on random initialization. Alternatives to balance the unstable labelling process using the means algorithm can use discretization. The addition of the K-means method with discretization can create fields with geometric shapes that are pretty flat. The segmentation with Sasirangan fabric with a full motif or data number four 741.78s, results in processing the fastest and the longest computational time on data number two 120.79s.
Downloads
Abstract viewed = 283 times
References
Akram, T., Naqvi, S. R., Haider, S. A., & Kamran, M. (2017). Towards real-time crops surveillance for disease classification?: exploiting parallelism in computer vision R. Computers and Electrical Engineering, 59, 15–26. https://doi.org/10.1016/j.compeleceng.2017.02.020
Bao, Z., Sha, J., Li, X., Hanchiso, T., & Shifaw, E. (2018). Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method. Marine Pollution Bulletin, 137(July), 388–398. https://doi.org/10.1016/j.marpolbul.2018.08.009
Castillo-martínez, M. Á., Gallegos-funes, F. J., Carvajal-gámez, B. E., Urriolagoitia-sosa, G., & Rosales-silva, A. J. (2020). Color index based thresholding method for background and foreground segmentation of plant images. Computers and Electronics in Agriculture, 178(April 2019), 105783. https://doi.org/10.1016/j.compag.2020.105783
Danish, M., Nishat, M., Hashim, R., Mohamad, J., & Abu, E. (2020). Analysis using image segmentation for the elemental composition of activated carbon. MethodsX, 7, 1–9. https://doi.org/10.1016/j.mex.2020.100983
He, L., & Huang, S. (2020). An efficient krill herd algorithm for color image multilevel thresholding segmentation problem. Applied Soft Computing Journal, 89, 106063. https://doi.org/10.1016/j.asoc.2020.106063
Houssein, E. H., Emam, M. M., & Ali, A. A. (2021). An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm. Expert Systems With Applications, 185(May), 115651. https://doi.org/10.1016/j.eswa.2021.115651
Huang, M., Liu, Y., & Yang, Y. (2022). Edge detection of ore and rock on the surface of explosion pile based on improved Canny operator. Alexandria Engineering Journal, 61(12), 10769–10777. https://doi.org/10.1016/j.aej.2022.04.019
Ibrahim, A., & El-Kenawy, E.-S. M. (2020). Image Segmentation Methods Based on Superpixel Techniques: A Survey. Journal of Computer Science and Information Systems, 2020(6), 1–10. www.jcsis.org/
Lei, B., & Fan, J. (2019). Image thresholding segmentation method based on minimum square rough entropy. Applied Soft Computing Journal, 84, 105687. https://doi.org/10.1016/j.asoc.2019.105687
Lim, S.-J., Thiel, C., Sehm, B., Deserno, L., Lepsien, J., & Obleser, J. (2022). Distributed networks for auditory memory differentially contribute to recall precision. NeuroImage, 119227. https://doi.org/10.1016/j.neuroimage.2022.119227
Marleny, F., & Mambang. (2019). Optimasi Genetic Algorithm Dengan Jaringan Syaraf Tiruan Untuk Klasifikasi Citra. Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM), 4(1), 1–6. https://doi.org/10.20527/jtiulm.v4i1.32
Maulida, N. H., Hidayat, B., & Sa’idah, S. (2019). Pengenalan Kain Sasirangan Berdasarkan Tekstur Dengan Filter Gabor, Template Matching dan Klasifikasi Decision Tree. E-Proceeding of Engineering, 6(1), 927–934.
Medeiros, A. G., Guimarães, M. T., Peixoto, S. A., Santos, L. de O., da Silva Barros, A. C., Rebouças, E. de S., de Albuquerque, V. H. C., & Rebouças Filho, P. P. (2019). A new fast morphological geodesic active contour method for lung CT image segmentation. Measurement: Journal of the International Measurement Confederation, 148. https://doi.org/10.1016/j.measurement.2019.05.078
Muharir, M. (2018). Pengenalan Citra Sasirangan Berbasis Fitur Glcm Dan Median Filter Menggunakan Learning Vector Quantitation. Technologia: Jurnal Ilmiah, 9(4), 255. https://doi.org/10.31602/tji.v9i4.1541
Qur’ana, T. W. (2018). Perbaikan Citra Menggunakan Median Filter Untuk Meningkatkan Akurasi Pada Klasifikasi Motif Sasirangan. Technologia: Jurnal Ilmiah, 9(4), 270. https://doi.org/10.31602/tji.v9i4.1543
Rahaman, J., & Sing, M. (2021). An efficient multilevel thresholding based satellite image segmentation approach using a new adaptive cuckoo search algorithm. Expert Systems With Applications, 174(May 2020), 114633. https://doi.org/10.1016/j.eswa.2021.114633
Rahma, F. I., Utami, E., & Fatta, H. Al. (2020). The Using of Gaussian Pyramid Decomposition, Compact Watershed Segmentation Masking and DBSCAN in Copy-Move Forgery Detection with SIFT. 2020 3rd International Conference on Information and Communications Technology, ICOIACT 2020, 325–330. https://doi.org/10.1109/ICOIACT50329.2020.9332081
Rosyadi, M. D. (2017). Pengenalan Motif Dasar Pada Kain Sasirangan. Technologia, 8(2), 53–61.
Downloads
ARTICLE Published HISTORY
How to Cite
Issue
Section
License
Copyright (c) 2022 Finki Marleny, Mambang Mambang
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.