Design of Expert System for Diagnosis of Gonorrhea Disease by using Web-Based Naïve Bayes Method

Authors

  • Teri Ade Putra Universitas Putra Indonesia “YPTK” Padang
  • Raja Ayu Mahessya Universitas Putra Indonesia “YPTK” Padang
  • Pradani Ayu Widya Purnama Universitas Putra Indonesia “YPTK” Padang
  • Reza Suriadinata Universitas Putra Indonesia “YPTK” Padang

DOI:

https://doi.org/10.47709/cnahpc.v3i2.1026

Keywords:

Expert System, Gonorrhea, Naive Bayes, Web Based, MySQL, PHP

Abstract

Gonorrhea is a sexually transmitted disease caused by the bacterium Neisseria gonorrhea that infects the lining of the bladder, cervix, rectum, throat, and the whites of the eyes. This disease is spread through the bloodstream to other parts of the body, especially the skin and joints and is generally transmitted through sexual contact. Gonorrhea not only affects adult men and women, but babies and even newborns can get gonorrhea from their mothers. An expert system is a system that seeks to adopt human knowledge into computers, so that computers can solve problems like an expert. With this expert system, the public can obtain information or can solve the problems they face which can only be obtained with the help of experts in their fields. This study explains how the expert system diagnoses Gonorrhea using the Naïve Bayes method. By using the Naïve Bayes method, it can predict future probability values based on previous experiences experienced by people with gonorrhea, Document classification can be personalized, tailored to the needs of each person. By using this expert system application, it can provide information and make it easier for the public to be more familiar with Gonorrhea and can handle problems based on the expertise of doctors who are experts in their fields. This expert system can provide solutions and prevention of gonorrhea disease with the diagnosis process carried out efficiently and save time in helping the community in the prevention that occurs. This web-based expert system application is built with the PHP programming language and MySQL data storage.

Downloads

Download data is not yet available.

References

Adityo, R. D., & Miawarni, H. (2017). Implementation of Naive Bayes Classifier Algorithm to Evaluation in Utilizing Online Hotel Tax Reporting Application. VOLT?: Jurnal Ilmiah Pendidikan Teknik Elektro, 2(2), 125. https://doi.org/10.30870/volt.v2i2.2049

Alvina Felicia Watratan, Arwini Puspita. B, & Dikwan Moeis. (2020). Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia. Journal of Applied Computer Science and Technology, 1(1), 7–14. https://doi.org/10.52158/jacost.v1i1.9

Annur, H. (2018). Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes. ILKOM Jurnal Ilmiah, 10(2), 160–165. https://doi.org/10.33096/ilkom.v10i2.303.160-165

As’ad, B. (2016). Prediksi Kehadiran Menggunakan Metode Klasifikasi Naïve Bayes, One-r, Decision Tree. Jurnal Penelitian Komunikasi Dan Opini Publik, 20(1), 124041.

Bestari, D. P. B., Saptono, R., & Anggrainingsih, R. (2018). Academic Articles Classification Using Naive Bayes Classifier (NBC) Method. Jurnal Ilmiah Teknologi Dan Informasi, 7(2), 74–81.

Chandra, D. N., Indrawan, G., & Sukajaya, I. N. (2019). Klasifikasi Berita Lokal Radar Malang Menggunakan. 10(2), 11–19.

Chatrina, Siregar, N., Ruli, A, Siregar, R., & Yoga, Distra, Sudirman, M. (2020). Implementasi Metode Naive Bayes Classifier (NBC) Pada Komentar Warga Sekolah Mengenai Pelaksanaan Pembelajaran Jarak Jauh (PJJ). Jurnal Teknologia, 34(1), 102–110. https://aperti.e-journal.id/teknologia/article/view/67

Fadillah, A. P., & Hardiyana, B. (2018). Penerapan Naïve Bayes Classifier Untuk Pemilihan Konsentrasi Mata Kuliah. Jurnal Teknologi Dan Informasi, 8(2). https://doi.org/10.34010/jati.v8i2.1039

Hairani, H., & Innuddin, M. (2020). Kombinasi Metode Correlated Naive Bayes dan Metode Seleksi Fitur Wrapper untuk Klasifikasi Data Kesehatan. Jurnal Teknik Elektro, 11(2), 50–55. https://doi.org/10.15294/jte.v11i2.23693

Karunia, S. A., Saptono, R., & Anggrainingsih, R. (2017). Online New Classification Using Naive Bayes Clasifier with Mutual Information for Featur Selection. Jurnal Ilmiah Teknologi Dan Informasi, 6(1), 10–15. https://www.researchgate.net/publication/319963217%0AOnline

Octiara, D. L., & Ungu, B. (2018). Electrochemical Biosensor Sebagai Diagnostik Terbaru Terhadap Penyakit Gonore. Jurnal Majority, 7(3), 255–260. https://juke.kedokteran.unila.ac.id/index.php/majority/article/view/2087

Pitasari, D. A., & Martodiharjo, S. (2019). Studi Retrospektif?: Profil Infeksi Gonore ( Retrospective Study?: Gonorrhoeae Profile ). Ilmu Kesehatan Kulit Dan Kelamin - Periodical of Dermatology and Venereology, 31(1), 41–45.

Prayoga, N. D., Hidayat, N., & Dewi, R. K. (2018). Sistem Diagnosis Penyakit Hati Menggunakan Metode Naïve Bayes. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK), 2(8), 2666–2671.

Syaputri, A. W., Irwandi, E., & Mustakim, M. (2020). Naïve Bayes Algorithm for Classification of Student Major’s Specialization. Journal of Intelligent Computing & Health Informatics, 1(1), 17. https://doi.org/10.26714/jichi.v1i1.5570

Syarli, S., & Muin, A. (2016). Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi). Jurnal Ilmiah Ilmu Komputer, 2(1), 22–26.

Zulfikar, W. B., & Lukman, N. (2016). Perbandingan Naive Bayes Classifier Dengan Nearest Neighbor Untuk Identifikasi Penyakit Mata. Jurnal Online Informatika, 1(2), 82–86. https://doi.org/10.15575/join.v1i2.33

Downloads

Published

2021-08-27

How to Cite

Putra, T. A. ., Mahessya, R. A., Purnama, P. A. W., & Suriadinata, R. (2021). Design of Expert System for Diagnosis of Gonorrhea Disease by using Web-Based Naïve Bayes Method. Journal of Computer Networks, Architecture and High Performance Computing, 3(2), 223–233. https://doi.org/10.47709/cnahpc.v3i2.1026

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.