

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 3, July 2024

https://doi.org/10.47709/cnapc.v6i3.4417

 Submitted : 28 July 2024

 Accepted : 29 July 2024

 Published : 31 July 2024

* Corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-
NC-SA 4.0). 1460

Reverse Engineering for Static Analysis of Android Malware in Instant

Messaging Apps

I Gede Adnyana1)*, Putu Gede Surya Cipta Nugraha2), Bagus Rahmat Adin Nugroho3)
1)2)3)Institut Bisnis dan Teknologi Indonesia, Indonesia
1)*adnyana@instiki.ac.id, 2)surya.cipta@instiki.ac.id, 3) adinnugroho2001@gmail.com

ABSTRACT

Malware poses a significant threat to Android devices due to their high prevalence and vulnerability to attacks.

Analyzing malware on these devices is crucial given the persistent and sophisticated threats targeting Android

users. Static analysis of Android malware is a key approach used to detect malicious software without executing

the application. This method involves meticulously examining the application's source code or binaries to identify

signs of suspicious or harmful activities. The research methodology consists of three stages. The first stage involves

collecting malware samples spread through instant messaging applications. The second stage employs reverse

engineering, where APK files are decompiled to extract their contents. Following this, a static analysis is conducted,

focusing on the AndroidManifest.xml file and the source code to identify the behavior and potential threats posed

by the malware. The static analysis results revealed that Android malware often requests sensitive permissions to

access personal data, such as receiving, reading, and sending SMS, as well as accessing location and contacts.

Further analysis uncovered that after acquiring this data, the malware transmits it to the Telegram API via

authenticated HTTP requests using specific tokens and chat_ids. These findings highlight that the permissions

requested by the malware are designed to clandestinely collect and export personal data, posing a severe threat to

the privacy and security of Android users.

Keywords: Android Malware; Reverse Engineering; Sensitive Permissions; Static analysis; Privacy and Security

1. INTRODUCTION

Technological advancements have brought significant changes in various aspects of life, one of which is the use

of Android smartphones. Android smartphones now function not only as communication tools but also as

multifunctional devices that support productivity and entertainment. The increasing use of Android smartphones is

also accompanied by rising security threats that target their users. One of the main threats is malware, which can

infiltrate devices through applications downloaded from untrusted sources.

Malware poses a significant threat to Android devices due to their high prevalence and vulnerability to attacks.

The Android platform allows various applications to request and obtain permissions to access our phone's resources

as needed. This condition puts user data and credentials at risk and makes them vulnerable to attacks (Ali & Abdul-

Qawy, 2021). With the increasing popularity of the Android operating system, it has become a favored target for

attackers (Pan et al., 2020). Cybercriminals continuously develop new methods to spread malware that can steal

personal data, access sensitive information, and control devices without the user's knowledge. Currently, there is a

worrying trend where malware can spread to Android devices through instant messaging applications such as

WhatsApp and Telegram using social engineering tricks. The attackers send false information to potential victims,

such as about package deliveries, bills, water utility payments, taxes, and more, and send files with the APK extension

that appear to be related to the false information. To understand the behavior of malware that enters through instant

messaging, analysis is needed to prevent the impact when the application is installed on the user's Android device.

Malware analysis on Android devices is a crucial process given the high threats targeting these devices. Malware

on Android can come in the form of trojans, spyware, ransomware, and other types designed to steal data, spy on

users, or even take control of the device. The malware analysis process involves several stages, such as collecting

malware samples, decompiling the code to understand its workings, and monitoring its activity in a secure environment

or sandbox. Android malware analysis can be conducted through static analysis and dynamic analysis. Static analysis

https://doi.org/10.47709/cnapc.v6i3.4417
mailto:adnyana@instiki.ac.id
mailto:%20adinnugroho2001@gmail.com

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 3, July 2024

https://doi.org/10.47709/cnapc.v6i3.4417

 Submitted : 28 July 2024

 Accepted : 29 July 2024

 Published : 31 July 2024

 * Corresponding author

 Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. 1461

can be performed using reverse engineering techniques, feature analysis, and classification (Jusoh et al., 2021). Static

analysis of Android malware is an approach used to detect malicious software without executing the application. This

method involves examining the application's source code or binaries to look for signs of suspicious or harmful

activities (Mohamad Arif et al., 2021). Static analysis often includes using reverse engineering tools to decompile the

application and analyze its structure and code behavior. The main advantage of static analysis is its ability to identify

potential threats before the application is executed, thereby reducing the risk of malware infection on user devices.

.

2. LITERATURE REVIEW

2.1 Android Malware

Android malware is malicious software specifically designed to target the Android operating system on mobile

devices such as smartphones and tablets (Dahiya et al., 2023). This malware can infiltrate a user's device through

applications downloaded from unofficial sources or via malicious email attachments. Android malware can cause

various issues, ranging from the theft of personal data, such as contacts and financial information, to remote control

of the victim's device. Common types of Android malware include trojans, spyware, ransomware, and adware

(Rizqony et al., 2020). Trojans often disguise themselves as legitimate applications to trick users into installing them,

while spyware secretly monitors user activity. Ransomware encrypts user data and demands a ransom to decrypt it,

while adware exposes users to unwanted advertisements and frequently redirects them to harmful websites.

The spread of Android malware is often carried out through APK (Android Package Kit) files, which are the file

format used for the distribution and installation of applications on Android devices. These files contain various

elements necessary for running the application, such as AndroidManifest.xml, Class.dex, Res, and Lib (Lee et al.,

2022). Among the components of an Android application, the AndroidManifest file contains information about the

permissions required to run the application. This file functions to protect users' personal information, and these

permissions are automatically set by the system according to the authority possessed, and require user consent

(Hindarto & Djajadi, 2023).

2.2 Reverse Engineering

Reverse engineering is the process of analyzing a system to understand how it works without having access to the

original design or documentation. In the context of software, reverse engineering is often used to decompile the binary

code of an application to study its structure, functions, and internal behavior (Saputro et al., 2020). This technique is

crucial in security analysis, particularly for detecting and analyzing malware, understanding potential vulnerabilities,

and developing security patches. The process of reverse engineering an Android application begins with the

decompilation of the APK file (Liu et al., 2021). An APK file, which contains all the components necessary to run the

application, including binary code, resources, and manifest files, is disassembled using decompilation tools such as

APKTool, JADX, or Dex2Jar. Reverse engineering of Android applications can involve a series of activities including

decompiling the APK file, converting Java to Intermediate Language (IL), and examining the application's Java code

(Hrushik Raj et al., 2023).

2.3 Malware Analysis

Malware analysis methods are divided into two main categories: static analysis and dynamic analysis.

Fig.1 Malware analysis method (Megira et al., 2018)

https://doi.org/10.47709/cnapc.v6i3.4417
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 3, July 2024

https://doi.org/10.47709/cnapc.v6i3.4417

 Submitted : 28 July 2024

 Accepted : 29 July 2024

 Published : 31 July 2024

 * Corresponding author

 Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. 1462

Fig. 1 illustrates the structure of the malware analysis process, which consists of two main approaches: Static

Analysis and Dynamic Analysis. Static Analysis is divided into two stages: Basic Static Analysis and Advanced Static

Analysis. Similarly, Dynamic Analysis is also divided into two stages: Basic Dynamic Analysis and Advanced

Dynamic Analysis. Both approaches, static and dynamic, work together to provide comprehensive information that is

then compiled into a Malware Analysis Report. This diagram shows a systematic workflow for understanding and

documenting the behavior and characteristics of malware through various levels of analysis.

2.4 Static Analysis

Static analysis of Android malware is an approach used to detect malicious software without executing the

application. This method involves examining the application's source code or binaries to look for signs of suspicious

or harmful activities. Static analysis encompasses several techniques, including decompilation, permission analysis,

and feature analysis. These techniques enable early detection of malware by identifying patterns or signatures that

correspond to known malicious behaviors. According to recent research, static analysis methods can enhance malware

detection accuracy through the use of machine learning algorithms and advanced feature selection techniques (Arif et

al., 2021). Nevertheless, a major challenge faced is the ability of malware to obfuscate or disguise its code to evade

detection (Ehsan et al., 2022). Other studies indicate that integrating static analysis with other methods, such as

dynamic analysis, can improve detection effectiveness (Karim et al., 2020). Additionally, the use of larger and more

diverse datasets also helps improve the performance of detection systems (Zhao, 2023). With the continuous

development of analysis techniques and tools, static analysis remains a crucial component in efforts to safeguard

Android devices from malware threats.

3. METHOD

The methodology in this research consists of three stages: the first stage involves collecting malware samples

spread through instant messaging applications. The second stage employs reverse engineering, where .apk files are

decompiled to extract their contents. Following this, a static analysis is conducted, which includes analyzing the

AndroidManifest.xml file and the source code to identify the behavior and potential threats posed by the malware.

The stages of the research are illustrated in Fig. 2

Fig. 2 Research stages

3.1 Android Malware Collection

The process of collecting Android malware spread through instant messaging applications involves several

systematic steps. First, identify instant messages that potentially contain malware, such as those from WhatsApp,

Telegram, and others. Then, monitor suspicious messages, particularly those containing links or files with the APK

extension. Next, download these files to use them as malware samples. In this context, three malware samples collected

are "UndanganPernikahan.apk," which is often sent with a fake wedding invitation message, "Lihat Foto Paket.apk,"

which disguises itself as a package notification with a photo attachment, and "Surat E-Tilang.apk," which pretends to

be an electronic letter from a government agency regarding a traffic ticket. Each of these malware samples is then

further analyzed using reverse engineering and static analysis techniques to understand the infection methods and their

impact on infected devices.

3.2 Reverse Engineering

The reverse engineering steps for decompiling APK files suspected to be Android malware begin with setting up

https://doi.org/10.47709/cnapc.v6i3.4417
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 3, July 2024

https://doi.org/10.47709/cnapc.v6i3.4417

 Submitted : 28 July 2024

 Accepted : 29 July 2024

 Published : 31 July 2024

 * Corresponding author

 Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. 1463

a secure and isolated working environment to prevent malware infection on the system. The first step is to use

decompilation tools such as JADX or APKTool to extract the contents from the APK file. This process involves

converting the .dex (Dalvik Executable) files into readable source code such as Java. Once the files have been

successfully decompiled, the next step is to analyze the decompiled files.

3.3 Static Analysis

The static analysis stage involves examining the AndroidManifest.xml file, which contains the permissions

requested by the application. For instance, in the provided file, the application requests permissions to receive and

send SMS, access the internet, read SMS, and more. These permissions can indicate potential dangers if used for

malicious purposes. Next, the source code analysis involves inspecting the code structure to find suspicious parts, such

as functions that handle sensitive data (e.g., contacts, messages, or personal information), and then analyzing the data

flow to see how data is collected, processed, and transmitted. This can reveal malicious activities such as data theft or

sending data to external servers.

4. RESULT

4.1 Decompile APK

The process begins by using tools like JADX to disassemble the APK file, breaking it down into its constituent

parts, including the Dalvik Executable (.dex) files. These .dex files are then further decompiled to retrieve the source

code in Java, making it easier to analyze.

Fig. 3 Results of decompiling android malware

https://doi.org/10.47709/cnapc.v6i3.4417
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 3, July 2024

https://doi.org/10.47709/cnapc.v6i3.4417

 Submitted : 28 July 2024

 Accepted : 29 July 2024

 Published : 31 July 2024

 * Corresponding author

 Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. 1464

Fig. 3 shows the directory structure of three different malware APK files: "UndanganPernikahan.apk," "Lihat Foto

Paket.apk," and "Surat E-TILANG.apk." Each APK file contains several essential components such as the source

code, the AndroidManifest.xml file, and various .dex files that contain the application's bytecode. The source code is

organized into packages that include various classes and activities, including the main activity and notification

services. Additionally, there is a resource folder that contains assets, XML files, and other resources used by the

application. The AndroidManifest.xml file is crucial for analysis as it contains declarations of the permissions required

by the application, which can provide indications of the application's malicious intent. Further analysis of the classes

and methods within the .dex files can reveal malware behaviors, such as automatic SMS sending or user data

surveillance. This figure helps provide an in-depth understanding of the internal components of each malware APK,

which is essential for effective threat analysis and detection.

4.2 AndroidManifest.xml Analysis

Analysis of the AndroidManifest.xml file is crucial in detecting the behavior and potential threats of an Android

application. This file contains information about the structure and main elements of the application, such as activities,

services, broadcast receivers, and requested permissions. By analyzing the AndroidManifest.xml, we can identify

suspicious or unusual permissions, such as access to SMS, contacts, location, and other features that can be misused

by malware.

Fig. 4 AndroidManifest.xml UndanganPernikahan.apk

Fig. 4 shows the contents of the AndroidManifest.xml file in UndanganPernikahan.apk, which declares the

permissions requested by the application as well as the configuration of its main components. It is evident that this

application requests various sensitive permissions such as RECEIVE_SMS, READ_SMS, and SEND_SMS, which

allow the application to receive, read, and send SMS. The INTERNET and ACCESS_NETWORK_STATE

permissions enable the application to access the network, while WAKE_LOCK prevents the device from entering

sleep mode. The RECEIVE_BOOT_COMPLETED permission indicates that the application can start when the device

finishes booting, and FOREGROUND_SERVICE allows the application to run foreground services. The extensive

and sensitive permission requests suggest that this application has the potential to perform various actions that could

jeopardize user privacy and security.

https://doi.org/10.47709/cnapc.v6i3.4417
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 3, July 2024

https://doi.org/10.47709/cnapc.v6i3.4417

 Submitted : 28 July 2024

 Accepted : 29 July 2024

 Published : 31 July 2024

 * Corresponding author

 Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. 1465

Fig. 5 AndroidManifest.xml Lihat Foto Paket.apk

Fig. 5 displays the contents of the AndroidManifest.xml file in Lihat Foto Paket.apk. This application requests

several important permissions including RECEIVE_SMS, SEND_SMS, and INTERNET, allowing the application to

receive and send SMS messages as well as access the internet. Additionally, there is a specific permission such as

"ticket.cox.DYNAMIC_RECEIVER_NOT_EXPORTED_PERMISSION," which may indicate a special feature or

capability of the application. The file also shows that the application requires telephony hardware features but it is not

mandatory (android.hardware.telephony android:required="false"). The application targets SDK version 33 with a

minimum SDK version of 24. This analysis indicates that the application has access to permissions that can be used

to send and receive SMS, which is often a sign of potentially harmful or abusive behavior, especially in the context of

malware.

Fig. 6 AndroidManifest.xml Surat E-Tilang.apk

Fig. 6 displays the contents of the AndroidManifest.xml file in Surat E-Tilang.apk, which requests a number of

important and sensitive permissions. The requested permissions include ACCESS_COARSE_LOCATION and

ACCESS_FINE_LOCATION, allowing the application to access the user's location, as well as RECEIVE_SMS,

READ_SMS, and SEND_SMS, which enable the application to receive, read, and send SMS messages. Additionally,

the application requests INTERNET and ACCESS_NETWORK_STATE permissions to access the network,

CALL_PHONE to make phone calls, and WAKE_LOCK to prevent the device from entering sleep mode. The

RECEIVE_BOOT_COMPLETED and FOREGROUND_SERVICE permissions indicate that the application can start

https://doi.org/10.47709/cnapc.v6i3.4417
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 3, July 2024

https://doi.org/10.47709/cnapc.v6i3.4417

 Submitted : 28 July 2024

 Accepted : 29 July 2024

 Published : 31 July 2024

 * Corresponding author

 Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. 1466

running when the device finishes booting and can run foreground services. The application also requests permissions

to access notifications and control notification policies through ACCESS_NOTIFICATION_POLICY. This extensive

and sensitive permission request suggests that the application has the capability to perform various actions that could

jeopardize user privacy and security.

4.3 Source Code Analysis

Source code analysis to determine the data flow of malware aims to understand how data is collected, processed,

and transmitted by the application. This process begins by identifying the main entry points, such as message receivers

or activities that are executed when the application is launched. Next, we trace how data, such as SMS messages,

device information, or other user data, is retrieved and processed by the application. By following the data flow

through various methods and classes in the code, we can find suspicious patterns or logic, such as sending data to

external servers or storing data locally for unclear purposes.

Fig. 7 Source code snippet onReceive UndanganPernikahan.apk

Fig. 7 shows a snippet of Java code from an Android application implementing a BroadcastReceiver to handle

received SMS messages. When the application receives an intent with the action

"android.provider.Telephony.SMS_RECEIVED," it extracts the SMS data from the intent. The code then parses the

SMS message into SmsMessage objects, retrieves the sender's number and the message content, and replaces some

special characters in the message content. Next, it gathers user device information such as the ID and brand,

concatenating it into a string. The code then creates an HTTP request using the OkHttp3 library, sending the

concatenated data to a Telegram API URL using the POST method. The onFailure and onResponse callbacks are used

to handle the results of this HTTP request. Thus, this code demonstrates suspicious behavior where the application

secretly sends users' personal information to an external server without their knowledge.

https://doi.org/10.47709/cnapc.v6i3.4417
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 3, July 2024

https://doi.org/10.47709/cnapc.v6i3.4417

 Submitted : 28 July 2024

 Accepted : 29 July 2024

 Published : 31 July 2024

 * Corresponding author

 Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. 1467

Fig. 8 Source code snippet onReceive Lihat Foto Paket.apk

Fig. 8 shows a section of Java code from an Android application that uses a `BroadcastReceiver` to process

received SMS messages. When the application receives an intent with the action

"android.provider.Telephony.SMS_RECEIVED," it checks for any additional data included. If present, the SMS data

is retrieved from the extras with the key "pdus" and converted into `SmsMessage` objects. Each SMS message is

parsed to obtain the sender's number and the message content, and special characters in the message are replaced.

Device information such as ID, user, product, brand, and device type is gathered and concatenated into a single string.

The application then creates an HTTP request using OkHttp3 to send this data to a Telegram API URL with a specific

token and chat_id. The `onFailure` callback handles failed transmissions, while the `onResponse` callback handles

successful responses from the server. This code demonstrates that the application automatically sends SMS

information and device details to an external server, which is suspicious behavior indicating potential malware activity.

Fig.9 Source code snippet onReceive Surat E-Tilang.apk

https://doi.org/10.47709/cnapc.v6i3.4417
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 3, July 2024

https://doi.org/10.47709/cnapc.v6i3.4417

 Submitted : 28 July 2024

 Accepted : 29 July 2024

 Published : 31 July 2024

 * Corresponding author

 Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. 1468

Fig. 9 displays a snippet of Java code from an Android application implementing a `BroadcastReceiver` to handle

received SMS messages. When the application receives an intent with the action

"android.provider.Telephony.SMS_RECEIVED," it checks for any additional data included. If present, the SMS data

is retrieved from the extras with the key "pdus" and converted into `SmsMessage` objects. Each SMS message is

parsed to obtain the sender's address and the message content, with special characters in the message content being

replaced. Device information such as ID, user, product, brand, and device model is gathered and concatenated into a

single string. The application then creates an HTTP request using OkHttp3 to send this data to a Telegram API URL

with a specific token and chat_id. This URL is constructed by appending the device model to further identify the

infected device. The `onFailure` callback handles transmission failures, while the `onResponse` callback handles

successful responses from the server. This code demonstrates that the application automatically sends SMS

information and device details to an external server via the Telegram API.

5. DISCUSSIONS

The research results indicate that the permissions requested by Android malware heavily lean towards accessing

users' personal data, such as RECEIVE_SMS, READ_SMS, SEND_SMS, ACCESS_FINE_LOCATION, and

READ_CONTACTS. An in-depth analysis of the source code revealed that after obtaining personal data like SMS

messages and device information, this malware sends the data to the Telegram API using an HTTP request with a

specific token and chat_id. To validate these findings, further research is needed through dynamic analysis, which will

test the malware's behavior in a runtime environment. By running the application in a sandbox or emulator, we can

monitor how the malware interacts with the system, captures data, and sends it to external servers. The combination

of static and dynamic analysis provides a more comprehensive and accurate picture of the modus operandi and threats

posed by this Android malware.

6. CONCLUSION

The conclusion of this study indicates that Android malware specifically requests sensitive permissions to access

users' personal data, such as receiving, reading, and sending SMS, as well as accessing location and contacts. Source

code analysis reveals that once this data is obtained, the malware sends the information to the Telegram API via HTTP

requests authenticated with a specific token and chat_id. These findings confirm that the permissions requested by the

malware are not only suspicious but also designed to collect and export users' personal data covertly. This provides

strong evidence that the malware exploits special permissions to steal personal data and send it to external servers,

posing a serious threat to the privacy and security of Android users. To improve the results of this study, it is

recommended to conduct dynamic analysis as a complement to the static analysis that has been carried out. With

dynamic analysis, researchers can observe the malware's behavior directly in a controlled environment, such as how

the malware accesses and transmits data in real-time. This also allows for the identification of evasion techniques that

the malware might use to avoid detection. Thus, dynamic analysis can provide additional, deeper insights into the

malware's modus operandi, resulting in a more comprehensive and accurate analysis report.

7. REFERENCES

Ali, A. A., & Abdul-Qawy, A. S. H. (2021). Static analysis of malware in android-based platforms: A progress study.

International Journal of Computing and Digital Systems. https://doi.org/10.12785/ijcds/100132

Arif, J. M., Razak, M. F. A., Awang, S., Tuan Mat, S. R., Ismail, N. S. N., & Firdaus, A. (2021). A Review: Static

Analysis of Android Malware and Detection Technique. Proceedings - 2021 International Conference on

Software Engineering and Computer Systems and 4th International Conference on Computational Science and

Information Management, ICSECS-ICOCSIM 2021. https://doi.org/10.1109/ICSECS52883.2021.00112

Dahiya, A., Singh, S., & Shrivastava, G. (2023). Android malware analysis and detection: A systematic review. In

Expert Systems. https://doi.org/10.1111/exsy.13488

Ehsan, A., Catal, C., & Mishra, A. (2022). Detecting Malware by Analyzing App Permissions on Android Platform: A

Systematic Literature Review. In Sensors. https://doi.org/10.3390/s22207928

Hindarto, D., & Djajadi, A. (2023). Android-manifest extraction and labeling method for malware compilation and

dataset creation. International Journal of Electrical and Computer Engineering.

https://doi.org/10.47709/cnapc.v6i3.4417
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 3, July 2024

https://doi.org/10.47709/cnapc.v6i3.4417

 Submitted : 28 July 2024

 Accepted : 29 July 2024

 Published : 31 July 2024

 * Corresponding author

 Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. 1469

https://doi.org/10.11591/ijece.v13i6.pp6568-6577

Hrushik Raj, S., Thejaswini, P., & Nandi, S. (2023). Reverse Engineering techniques for Android systems: A

Systematic approach. 2023 IEEE Guwahati Subsection Conference, GCON 2023.

https://doi.org/10.1109/GCON58516.2023.10183629

Jusoh, R., Firdaus, A., Anwar, S., Osman, M. Z., Darmawan, M. F., & Razak, M. F. A. (2021). Malware Detection

Using Static Analysis in Android: a review of FeCO (Features, Classification, and Obfuscation). PeerJ

Computer Science. https://doi.org/10.7717/peerj-cs.522

Karim, A., Chang, V., & Firdaus, A. (2020). Android botnets: A proof-of-concept using hybrid analysis approach.

Journal of Organizational and End User Computing. https://doi.org/10.4018/JOEUC.2020070105

Lee, S. A., Yoon, A. R., Lee, J. W., & Lee, K. (2022). An Android Malware Detection System using a Knowledge-

based Permission Counting Method. International Journal on Informatics Visualization.

https://doi.org/10.30630/joiv.6.1.859

Liu, L., Ren, W., Xie, F., Yi, S., Yi, J., & Jia, P. (2021). Learning-Based Detection for Malicious Android Application

Using Code Vectorization. Security and Communication Networks. https://doi.org/10.1155/2021/9964224

Megira, S., Pangesti, A. R., & Wibowo, F. W. (2018). Malware Analysis and Detection Using Reverse Engineering

Technique. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1140/1/012042

Mohamad Arif, J., Ab Razak, M. F., Awang, S., Tuan Mat, S. R., Ismail, N. S. N., & Firdaus, A. (2021). A static

analysis approach for Android permission-based malware detection systems. PloS One.

https://doi.org/10.1371/journal.pone.0257968

Pan, Y., Ge, X., Fang, C., & Fan, Y. (2020). A Systematic Literature Review of Android Malware Detection Using

Static Analysis. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3002842

Rizqony, Y. I., Akbi, D. R., & Sumadi, F. D. S. (2020). Analisis Karakteristik Malware Joker Berdasarkan Fitur

Menggunakan Metode Statik Pada Platform Android. Jurnal Repositor.

https://doi.org/10.22219/repositor.v2i10.1145

Saputro, B. A., Alfitra, L. I., & Oktaviaji, R. B. (2020). Analisis Malware Android Menggunakan Metode Reverse

Engineering. Jurnal Repositor. https://doi.org/10.22219/repositor.v2i10.1061

Zhao, K. (2023). Demystifying Privacy and Security Issues in Potentially Harmful Mobile Applications.

https://doi.org/10.1109/icdcs57875.2023.00102

https://doi.org/10.47709/cnapc.v6i3.4417
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

