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ABSTRACT 

Flood is a threat that has significant impacts on communities and the environment. To improve the management of 

disaster risk, this research takes an integrated approach by utilizing geospatial data from various sources. The main 

objective of this research is to provide an integrated approach to determining flood-vulnerable area classes. This 

research focuses on the processing of various geospatial data such as DEM (Digital Elevation Model) imagery, 

Landsat 8 satellite imagery, Hydrological data based on SHuttle Elevation Derivatives at multiple Scales 

(HydroSHEDS) water flow accumulation imagery, and Climate Hazards Group InfraRed Precipitation with Station 

data (CHIRPS) rainfall imagery which are used as data sources to model the flood vulnerable area classification of 

The Jratunseluna watershed. Landsat 8 satellite imagery is used as a source for landuse land cover (LULC)  

classification, it is done to score each land category to the level of ability to absorb and drain excess water, the 

remaining data is used to score the earth elevation, accumulated water flow, and rainfall from the area. The weights 

and scores are used as the basis values to create a flood-vulnerable area classification model. The result of this 

research is a flood-vulnerable area classification map generated from a pre-made model.  
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1. INTRODUCTION 

Flooding is a natural disaster that often causes huge losses to communities and the environment. It is a major 

highlight to identify potential flood areas in the disaster risk mitigation efforts. To develop effective risk 

management strategies, an in-depth understanding of an area's vulnerability to flooding is crucial. The significant 

impacts of a flood event include property loss, loss of life, and damage to vital infrastructure. Therefore, it is 

important to have an in-depth understanding of an area's vulnerability to flooding in order to design effective risk 

management strategies. The identification of factors that contribute to increase vulnerability to flooding is critical 

in the context of disaster risk management (Negese et all., 2022). Spatial and temporal variability of environmental 

components, such as land cover, topography, river flow, and rainfall patterns, are the focal points in the 

development of this flood vulnerability classification model. 

 The Jratunseluna river basin in Central Java Province, Indonesia, is frequently affected by flooding. However, 

there is a lack of a comprehensive model that integrates various geospatial data sources to accurately classify 

flood vulnerability in this area. This gap hampers effective risk management and mitigation efforts. 

 This study aims to develop a flood vulnerability classification model for the Jratunseluna watershed. By 

integrating geospatial data from multiple sources, such as Landsat 8 imagery for land cover analysis, DEM 

imagery for elevation modeling, HydroSHEDS imagery for river flow analysis, and CHIRPS rainfall imagery for 

rainfall patterns, the model seeks to enhance the understanding of flood risks in the area. 

 The study employs a geospatial data integration approach to classify flood vulnerability. This approach 

involves combining spatial and temporal variability of environmental components, such as land cover, topography, 
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river flow, and rainfall patterns. The theoretical underpinning is based on the concept that integrating diverse 

environmental data sets can improve the accuracy and sustainability of flood risk mitigation efforts (Al-Areeq et 

al., 2023; Abdulrazzaq et al., 2018; Rahayu et al., 2023). 

 By utilizing geospatial data and integrating various environmental information, this research aims to contribute 

to a better understanding of flood risk. This, in turn, will enable more effective decision-making in the context of 

disaster management, ultimately enhancing the accuracy and sustainability of flood risk mitigation efforts. 

 

2. LITERATURE REVIEW 

Flood vulnerability assessment is a critical component in disaster risk management, particularly in regions 

prone to recurrent flooding. The integration of geospatial data has emerged as a pivotal method for evaluating 

flood vulnerability in various watersheds. Geographic Information System (GIS) techniques facilitate the merging 

of diverse datasets, such as rainfall, soil, topography, land use, drainage, and catchment flows, to effectively map 

flood-prone areas (Kunda et al., 2021). This integration enables a comprehensive examination of physical and 

socioeconomic factors, thereby identifying flood risk areas over different time periods (Bhuyan et al., 2023). The 

incorporation of remotely sensed data and other spatial information within GIS platforms has proven essential for 

creating thematic maps that aid in flood risk analysis and assessment. Research indicates that employing spatial 

multi-criteria evaluation methods within GIS environments is highly effective for estimating flood-vulnerable 

zones. These methods consider various physical factors, including rainfall intensity, slope, elevation, distance 

from rivers, land use, and soil type (Fadhil et al., 2020). 

Despite significant advancements in GIS and remote sensing techniques, there remains a notable gap in the 

creation of a comprehensive model that integrates diverse geospatial data sources. Specifically, there is a lack of 

models that combine Digital Elevation Model (DEM) imagery, Landsat 8 satellite imagery, HydroSHEDS water 

flow accumulation imagery, and CHIRPS rainfall imagery to classify flood vulnerability in the Jratunseluna 

watershed. This gap highlights the need for further research to develop more integrated and accurate flood 

vulnerability models. The integration of geospatial techniques and GIS tools significantly enhances the assessment 

and analysis of flood vulnerability across various watersheds. By combining different datasets and employing 

advanced spatial analysis methods, researchers can effectively map flood-prone areas, assess vulnerability levels, 

and develop strategic mitigation measures. These efforts are vital for reducing the impact of floods in vulnerable 

regions and improving overall disaster management strategies. In summary, while current research has made 

substantial progress in the use of GIS and remote sensing for flood vulnerability assessment, there is a clear need 

for more comprehensive models that integrate multiple geospatial data sources. Addressing this gap will enable 

more accurate and sustainable flood risk mitigation efforts, particularly in the Jratunseluna watershed. 

3. METHOD 

In this research, 4 types of remote sensing data, namely DEM imagery (Xu et all., 2021)(Muhammed, 2020), 

Landsat 8 imagery, HydroSHEDS imagery, and CHIRPS imagery were used to create a classification model of 

the flood vulnerability in the area of interest. To create a flood vulnerability classification model, numerical values 

were extracted from the data as a reference. A new dataset derived from the 4 remote sensing data mentioned 

which contains a certain score and was obtained by a certain method which will be discussed later. By scoring, 

the degree to which the pixel value affects the occurrence of flooding can be measured. These scores can be used 

in subsequent steps to calculate a flood-vulnerable area classification model, where each type of data (DEM, land 

cover classification, accumulated water flow, rainfall) is weighted based on a predetermined score. Figure 1 is a 

flowchart that explains a summary of the steps taken in this study 
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Fig.1 Flowchart of Research Steps. 

In this research, the DEM imagery used is the Shuttle Radar Topography Mission (SRTM) image version 4 

(Jarvis et all., 2008). This imagery contains data on the elevation of the earth's surface relative to the sea level. 

Extracting the numerical values were done by extracting pixel values in the DEM imagery of the area of interest.  

The pixel value was categorized based on the pixel value range and score was given to each range. The details of 

the scores for each range are described in Table 1. 

Table 1 

Scoring of DEM Imagery Pixel Values 

Condition Score 

Areas with pixel value equal to or less than 100 (elevation 100 m above sea level) 10 

Areas with pixel value equal to or less than 500 but more than 100 5 

Areas with pixel values less than 500 1 

 

To perform land-use land-cover (LULC) classification (Gn Vivekananda et all, 2021), Landsat 8 satellite 

imagery was used.  Filtered imageries were capturedin 2021 for the area of interest. The cloud removal process 

had been carried out because clouds are noise in remote sensing imagery (Candra et all, 2017) (Shen et all, 2015). 

LULC classification in this study has 7 categories, namely vegetation, water bodies, built-up land, bush grass, 

open land, rice fields, and gardens. Before the LULC classification was conducted, Landsat 8 satellite imagery 

was first labelled based on each category. Furthermore, the classification was carried out using the random forest 

algorithm (Avci et all, 2023). After classification, each category is given a score or weight according to its potential 

contribution to flood vulnerability. The score for each land category depends on the ability of the particular land 

category to absorb water or drain excess water. The details of the scores given for each landcover category are 

described in Table 2. 
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Table 2 

Scoring of Landcover Category 

Landcover Score 

Water Body 10 

Built-up Land 10 

Bush Grass 10 

Open Land 10 

Rice Field 5 

Garden 5 

Vegetation 1 

 

In modeling the classification of flood-vulnerable areas, the accumulation of water flow on the land in the 

area of interest is also required to be known. This is the reason why the HydroSHEDS (Lehner et all, 2008) 

imagery was needed. The pixel values in the HydroSHEDS imagery were extracted so that the numerical values 

of the pixels can be used as a reference or data source for modeling. The pixel values from the HydroSHEDS 

image were then categorized based on their value range and scores were assigned for each range. Table 3 describes 

the scoring of each pixel value range. 

Tabel 3 

Scoring of Water-flow Accumulation 

Condition Score 

Areas with pixel values equal to or less than 150 1 

Areas with pixel values equal to or less than 500 but more than 150 5 

Areas with pixel values more than 500 10 

 

Rainfall is also one of the factors that cause flooding (Narulita et all, 2018) (Auliyani et all, 2021). In this 

study, the use of rainfall data is considered as a reference in creating a flood-vulnerable land classification model. 

Due to the unavailability of 2021 data, CHIRPS (Funk et all, 2015) rainfall imagery that captured rainfall data 

throughout 2020 was used instead as the source of information.  The data shows the rainfall level of the area of 

interest is represented by the pixel value. The mean and the standard deviation of the rainfall in a year within the 

area of interest were calculated to determine two thresholds. The mean and standard deviation of pixel values in 

rainfall imagery are used as mean and standard deviation of rainfall. The following is formula to get the mean and 

standard deviation of pixel value in imagery: 

Mean =
∑ ∑ 𝐼𝑖𝑗

𝑤
𝑗=1

ℎ
𝑖=1

𝑁
                                                                  (1) 

 

Standard Deviation = √
∑ ∑ (𝐼𝑖𝑗 − 𝐼)̅

2𝑤
𝑗=1

ℎ
𝑖=1

𝑁
                         (2) 

 

Description: 

𝐼𝑖𝑗  = the intensity value of the pixel at row i and column j in the image. 

h = the height (number of rows) of the image. 

w = the width (number of columns) of the image. 

N = the total number of pixels in the image, which is equal to h × w. 

𝐼 ̅= the mean pixel value of the image. 
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The first threshold, labeled as ‘Threshold 1’ was obtained from the mean value of the rainfall, minus the 

standard deviation.  Meanwhile, the second threshold, identified as ‘Threshold 2’ was obtained from the mean of 

the rainfall, plus the standard deviation. After obtaining threshold values 1 and 2, the pixel values of the rainfall 

image were scored. Table 4 shows the details of the scores. 

Table 4 

Scoring of Rainfall 

Condition Score 

The rainfall value at a pixel is less than or equal to the threshold 1 1 

The rainfall value at a pixel is more than threshold 1 but less than or equal to threshold 2 5 

The rainfall value at a pixel is more than the threshold 2 10 

 

The flood vulnerable area classification model was calculated by combining scores from the above four 

factors: elevation (DEM score), landcover (landcover score), water-flow accumulation (water-flow accumulation 

score), and rainfall (rainfall score). Each score is given a certain weight according to its contribution. The weights 

that had been proposed to create the model are as follows: 

𝑀𝑜𝑑𝑒𝑙 =  (𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 𝑥 0.2) + (𝑙𝑎𝑛𝑑𝑐𝑜𝑣𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 𝑥 0.25) +

 (𝑤𝑎𝑡𝑒𝑟𝑓𝑙𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 𝑋 0.25) +  (𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑠𝑐𝑜𝑟𝑒 𝑥 0.3)                                                          (3)  

 

The values of 0.2, 0.25, 0.25, and 0.3 in the formula above are the weights given to each factor that affects 

the occurrence of the flood. The values of weight that mentioned earlier are discovered from the tuning experiment 

in google earth engine. These weights are the most optimum values in this particular study area. This model can 

be used based on expert judgment (Rokhis Research Group, 2024) conducted through group discussions and the 

delphi technique, which involves collecting opinions and feedback from a panel of anonymously selected experts 

through several rounds of questionnaires. 

  This weight indicates the value of a factor that affects the occurrence of floods. It can be strengthened or 

weakened because the factors that most affect the occurrence of floods in an area are always different depending 

on the conditions of the area in terms of topography, land use, rainfall, water-flow accumulation, and elevation. 

(Mahmud et all, 2018). In the case of high rainfall in areas with high elevation, the high rainfall does not affect 

the vulnerability of the area to flooding. 

After calculating the model, statistical calculations, such as mean and standard deviation were performed on 

the area of interest. These we re carried out to understand the spatial variation of the flood vulnerable area 

classification model. The threshold for flood vulnerable area classification was determined based on the mean and 

standard deviation values of the model just like the threshold calculation for the rainfall. Using these thresholds, 

the model was categorized, and each category was scored, and each pixel was assigned a flood-vulnerable area 

class according to its threshold. The result is a map of flood-vulnerable areas that divides the area of interest into 

three classes: Low, Medium, and High. This map helps in understanding the extent to which an area can be 

vulnerable to potential flooding, providing important insights for flood risk planning and mitigation. Visualizing 

the classification results on a map facilitates spatial interpretation to support decision-making related to flood risk 

management. 

 

 

4. RESULT 

Figure 2 is the visualization map of DEM values from SRTM images for the areas of interest which had been 

categorized based on the value ranges explained in the methodology. 
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Fig. 2 Map of Elevation Classification Based on DEM Imagery. 

 

To understand the distribution of the earth's elevation on the map, the meaning of the colors on the map needs 

to be known. Table 5 explains the details of the meaning of the colors on the map. 

 

Table 5: Meaning of Color in Elevation Classification Map. 

Color Meaning 

Black Areas with elevation value equal to or 

less than 100m above sea level 

Maroon Areas with elevation value equal to or  

less than 500m but more than 100m 

above sea level 

Yellow Areas with elevation value more than 

500m above sea level 

 

From the elevation visualization map above, it is known that more than 50% of the area of interest is lowland 

below 100 meters above sea level. To carry out LULC classification, the Landsat 8 satellite imagery was used as 

the reference as discussed in the methodology.  Figure 3 below is a Landsat 8 satellite imagery visualized in RGB 

or true color mode by selecting the red (b4), green (b3), and blue (b2) bands. Not forgetting that the image has 

also gone through the cloud filtering stage. That Clouds typically prevents the satellite from capturing the earth's 

surface picture. 

 

 
Fig. 3 Landsat 8 2021 Imagery of Area Interest. 

 

Figure 4 below is a visualization map of the LULC classification results in the area of interest. 
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Fig. 4 Map of Landuse and Landcover  

Category in Area of Interest. 

 

The meaning of the colors on the LULC classification map is explained in Table 6. 

 

Table 6 

 Meaning of Color in Landuse and Landcover Classification Map. 

Color Landcover Category 

Yellow Water Body 

Cream Built-up Land 

Lavender Bush Grass 

Pink Open Land 

Brown Rice Field 

Green Garden 

Purple Vegetation 

 

 

Based on the LULC classification, the largest area of interest is vegetation, followed by open land and 

gardens.  To understand the water flow accumulation pattern, Figure 5 was generated. It is the visualization map 

of the water flow accumulation values from the HydroSHEDS imagery which it can help an easier understanding 

of the water flow accumulation pattern in the area of interest. 

 
Fig. 5 Map of Flow Accumulation in Area of Interest. 

 

The cyan-blue area is the area with the highest water accumulation, followed by purple, brown, and white. 

The CHIRPS imagery was also processed to understand the level of rainfall in the area of interest for the year. 

Figure 6 is the map that depicts visualization and categorizes the rainfall value. 
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Fig. 6 Map of Rainfall Level of Area 

of Interest in 2020. 

 

Understand the level of rainfall level in areas of interest, Table 7 describes the meaning of each color in the map. 

 

Table 7 

Meaning of Color in Precipitation (Rainfall) Classification Map. 

Color Meaning 

Yellow  Areas with precipitation value 

equal to or less than 2350.300 

mm/year 

Pink Areas with precipitation value 

equal to or less than 2931.772 

mm/year but more than 2350.300 

mm/year 

Cyan Areas with precipitation value 

more than 2350.300 mm/year 

 

After calculating the average rainfall and its standard deviation for the year in the area of interest, the 

following values  were obtained. The average rainfall in the area of interest is 2641,036 mm/year and the standard 

deviation is 290,736 mm/year. From the two mentioned values , the threshold 1 value is 2350,300 mm/year 

(threshold 1 is obtained from subtracting the average from the standard deviation) and the threshold 2 value is 

2931,772 mm/year (threshold 2 is obtained from adding the average to the standard deviation).   As discussed in 

the methodology, threshold values 1 and 2 are then used as a reference in calculating the rainfall score. 

After the dataset for creating the flood vulnerable area classification model was successfully created, the the 

average and standard deviation of the model were determined. The mean and standard deviation that were obtained 

from the model are 5,043 and 1,322. Flood vulnerable area classification was carried out by categorizing values 

from the model that are below threshold 1.  These are the areas with a low level of flood vulnerability, while 

values between threshold 1 and 2 are areas with a medium flood vulnerability level.  For those with values above 

threshold 2 are basically areas with a high flood vulnerability level. After the calculations were carried out, the 

flood hazard classification category model can be visualized by map shown in Figure 7. And the meaning of colors 

in the map are described in Table 8. 
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Fig. 7 Map of Flood Vulnerable Area Classification. 

 

Table 8 

Meaning of Color in Map of Flood Vulnerable Area Classification. 

Color Meaning 

Yellow Areas with low flood vulnerability levels 

Pink Areas with medium flood vulnerability 

levels 

Cyan Areas with high flood vulnerability levels 

 

 

5. CONCLUSION 

 The research findings presented in this study reveal significant insights into the flood vulnerability of the 

Jratunseluna watershed. Elevation data analysis indicates that over 50% of the watershed comprises lowland areas, 

situated below 100 meters above sea level. This elevation classification, derived from Shuttle Radar Topography 

Mission (SRTM) images, is crucial for understanding the region's susceptibility to flooding. Additionally, the Land 

Use and Land Cover (LULC) classification, utilizing Landsat 8 satellite imagery, identified seven distinct 

categories: vegetation, water bodies, built-up land, bush grass, open land, rice fields, and gardens. Vegetation 

emerged as the dominant land cover category, followed by open land and gardens. This classification aids in 

comprehending the area's water absorption and drainage capacities. The study also incorporated water flow 

accumulation data from HydroSHEDS imagery, highlighting areas with the highest water accumulation in cyan-

blue, followed by purple, brown, and white areas. This mapping provides valuable insights into potential flood-

prone zones. Furthermore, the analysis of CHIRPS rainfall imagery from 2020 revealed an average annual rainfall 

of 2641.036 mm, with a standard deviation of 290.736 mm. This rainfall data was categorized into three thresholds 

to score and map flood vulnerability based on rainfall intensity. By integrating scores from DEM, LULC, water 

flow accumulation, and rainfall data, the study developed a comprehensive flood vulnerability classification 

model. The model assigned specific weights to each factor, resulting in a map categorizing flood vulnerability 

into low, medium, and high levels. The majority of the Jratunseluna watershed was found to fall under medium to 

high flood vulnerability categories, indicating a significant risk of flooding. In conclusion, the study successfully 

created a flood vulnerability classification model for the Jratunseluna watershed by integrating various geospatial 

data sources. The findings underscore the region's topographic characteristics, land cover distribution, water flow 

patterns, and rainfall levels, all contributing to the flood vulnerability assessment. The generated flood 

vulnerability map provides critical insights for disaster risk management and mitigation efforts in the region, 

assisting authorities in prioritizing areas for intervention and developing effective flood risk management 

strategies.  
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