
Journal of Computer Networks, Architecture and  

High Performance Computing 
Volume 6, Number 2, April 2024 

https://doi.org/10.47709/cnahpc.v6i2.3789  

 

Submitted : April 5, 2024  

Accepted   : April 27, 2024  

Published  : Apr 29, 2024 

 

 

 * Corresponding author 
  

 

 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 

International License. 783 
 

Analysis of Logistic Regression Regularization in Wild Elephant Classification 

with VGG-16 Feature Extraction 

 

Aulia Ichsan1)*, Sugeng Riyadi2), Doughlas Pardede3) 
1,2,3)Universitas Deli Sumatera, Indonesia 
1)auliaichsan15@gmail.com, 2)adhie.ogenk@gmail.com, 3)doug.pardede@gmail.com, 

 

 

ABSTRACT 

The research article explores the intersection of image-based wildlife classification and logistic regression 

regularization, focusing on the classification of wild elephant species. It begins by highlighting the significance of 

ecological research in biodiversity monitoring and conservation and introduces Convolutional Neural Networks 

(CNNs) as potent tools for feature extraction from images. The VGG-16 model is particularly emphasized for its 

ability to capture hierarchical representations of visual features crucial for classification tasks. The integration of 

VGG-16 feature extraction with logistic regression regularization is proposed as a compelling approach, offering 

a balance between sophisticated feature representation and efficient classification algorithms. The literature review 

delves into image-based wildlife classification, emphasizing the role of CNNs, especially VGG-16, in extracting 

discriminative features. It discusses the fusion of VGG-16 features with logistic regression and the challenges in 

this field, such as dataset annotation and environmental variability. The method section outlines the dataset 

acquisition, feature extraction using the VGG-16 architecture, and model configuration using logistic regression 

with lasso and ridge regularization. The process of finding the optimal regularization parameter (lambda) and 

model evaluation through cross-validation is detailed. Results showcase the optimal lambda values for lasso and 

ridge regularization and compare the performance of logistic lasso and logistic ridge models. Misclassification 

analysis reveals factors influencing classification accuracy, including feature variability and contextual complexity. 

The discussion reflects on the implications of the findings, emphasizing the importance of lambda selection and 

addressing challenges in wildlife classification. It suggests avenues for further research, such as advanced modeling 

techniques and feature engineering approaches. In conclusion, the study contributes to advancing wildlife 

classification efforts by leveraging state-of-the-art techniques and sheds light on opportunities to enhance 

classification accuracy in wildlife conservation. 

Keywords: Wildlife Classification; Logistic Regression; VGG-16; Lasso Regularization; Ridge 

Regularization 

 

INTRODUCTION 

In the realm of ecological research, the classification of wildlife species through image analysis stands as a crucial 

endeavor, offering profound insights into biodiversity monitoring and conservation efforts (Chisom et al., 2024). 

Leveraging advancements in computer vision and machine learning techniques, researchers have developed 

sophisticated methodologies for species identification and classification based on images captured in their natural 

habitats (Dhanya et al., 2022). This introduction encapsulates the essence of the research article's sections, which delve 

into various aspects of image-based wildlife classification and the utilization of logistic regression regularization in 

conjunction with VGG-16 feature extraction for classifying wild elephant species. 

Image-based wildlife classification has witnessed remarkable progress, driven by the emergence of Convolutional 

Neural Networks (CNNs) as a potent tool for feature extraction from images (Battu & Reddy Lakshmi, 2023). Among 

these architectures, the VGG-16 model has garnered significant attention for its efficacy in capturing intricate features 

vital for classification tasks (Handayani, Rosnelly, & Hartono, 2023). By traversing through its deep layers, VGG-16 

can discern hierarchical representations of visual features, ranging from low-level textures to high-level object 

semantics, enabling robust species identification and monitoring (Firmansyah & Rosnelly, 2023). 

The fusion of VGG-16 feature extraction with logistic regression presents a compelling approach in wildlife 

classification (Rajabizadeh & Rezghi, 2021). Logistic regression, renowned for its simplicity and efficiency, 

complements the rich feature representation extracted by VGG-16, offering a balance between sophisticated feature 

representation and efficient classification algorithms (Samudra, Rosnelly, Situmorang, & Ramadhan, 2023). 

Furthermore, regularization techniques such as lasso and ridge regularization play a crucial role in enhancing the 
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generalization performance of logistic regression models, ensuring reliable classification outcomes amidst challenges 

like overfitting and feature complexity (Kumar, Kedam, Sharma, Mehta, & Caloiero, 2023). 

The research article navigates through the integration of VGG-16 feature extraction with logistic regression 

regularization, aiming to classify wild elephant species based on extracted image features. Through meticulous dataset 

curation, feature extraction, model training, and evaluation, the study provides insights into the optimal regularization 

parameters and model performance, shedding light on the complexities and opportunities in image-based wildlife 

classification. Overall, the research article contributes to advancing wildlife classification efforts by leveraging state-

of-the-art techniques in feature extraction and classification algorithms. By elucidating the interplay between VGG-

16 feature extraction, logistic regression regularization, and wildlife classification, the study paves the way for 

enhanced biodiversity monitoring, conservation initiatives, and ecological research.  

 

LITERATURE REVIEW 

Image-based wild life classification 

The classification of wildlife species through image analysis has emerged as a crucial aspect of ecological research, 

offering invaluable insights into biodiversity monitoring and conservation efforts (Ukwuoma et al., 2022). Leveraging 

advancements in computer vision and machine learning techniques, researchers have developed sophisticated 

methodologies for species identification and classification based on images captured in their natural habitats (Saleh, 

Sheaves, & Rahimi Azghadi, 2022). 

One prevalent approach in image-based wildlife classification involves the extraction of discriminative features 

from images using Convolutional Neural Networks (CNNs) (Ng, Connie, Choo, & Goh, 2022). Among these 

architectures, the VGG-16 model stands out for its effectiveness in capturing intricate features from images. With its 

deep architecture comprising 16 layers, including convolutional and fully connected layers, VGG-16 can learn 

hierarchical representations of visual features, ranging from low-level features like edges and textures to high-level 

features corresponding to object shapes and semantics (Margolang, Riyadi, Rosnelly, & Wanayumini, 2023). 

CNN-based approaches have played a pivotal role in various wildlife classification endeavors, enabling researchers 

to identify individual species and monitor population dynamics across different habitats. For instance, studies have 

utilized CNNs to distinguish between different species of birds (Dharaniya R, Preetha M, & Yashmi S, 2022), 

mammals (Faizal & Sundaresan, 2022), and marine life (Fawwaz, Yennimar, Dharsinni, & Wijaya, 2023), facilitating 

efficient species monitoring and conservation efforts. Additionally, CNNs have been deployed in habitat monitoring 

applications (Pérez-Carabaza, Boydell, & O’Connell, 2021), aiding in detecting changes in ecosystems (Burrewar, 

Haque, & Haider, 2024) and assessing the impact of environmental factors on wildlife populations (Norman et al., 

2023). 

Despite significant advancements, challenges remain in image-based wildlife classification. These include the need 

for annotated datasets encompassing diverse species and habitats (Rubbens et al., 2023), addressing class imbalance 

issues (Bria, Marrocco, & Tortorella, 2020), and mitigating the impact of environmental variables on image quality 

and feature extraction (Roberts, Helmholz, Parnum, & Krishna, 2023). Additionally, ensuring the interpretability of 

CNN-based models and their ability to generalize across different environmental conditions warrant further 

investigation to ensure reliable and transferable classification outcomes. 

 

VGG-16 Feature Extraction in Classification 

In recent years, the utilization of deep learning models, particularly Convolutional Neural Networks (CNNs), for 

feature extraction in classification tasks has garnered significant attention across various domains, including wildlife 

classification (de Silva et al., 2022). Among these architectures, the VGG-16 model has emerged as a standout choice 

for its effectiveness in capturing intricate features from images (Hindarto, Afarini, & Esthi H, 2023). 

The VGG-16 architecture, characterized by its deep structure comprising 16 layers, including convolutional and 

fully connected layers, enables it to learn hierarchical representations of visual features (Al-Khater & Al-Madeed, 

2024). Starting from low-level features like edges and textures to high-level features corresponding to object shapes 

and semantics, VGG-16 can extract discriminative features that are crucial for classification tasks (Ye et al., 2021). 

In the realm of image classification, researchers have leveraged VGG-16 for a myriad of tasks, including object 

recognition (PARDEDE & HARDIANSAH, 2022), scene understanding (Masood, Ahsan, Munawwar, Rizvi, & 

Ahmed, 2020), fine-grained categorization (Cao et al., 2024), and wildlife identification (Islam, Khan, Abedin, 

Habibullah, & Das, 2019). Moreover, VGG-16 features have been extensively used as a basis for transfer learning, 

where pre-trained models are employed as feature extractors for downstream classification tasks (Pardede, Sitohang, 

Akbar, & Khodra, 2021). By leveraging the knowledge learned from large-scale datasets like ImageNet, VGG-16 
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features can be fine-tuned or utilized directly to classify images in specialized domains with limited training data, 

yielding superior performance compared to training models from scratch. 

However, challenges exist in deploying VGG-16 for feature extraction, including computational complexity, 

memory requirements, and the need for large-scale annotated datasets for training (Alzubaidi et al., 2021). 

Additionally, the interpretability of features extracted by VGG-16 and their relevance to specific classification tasks 

remain areas of ongoing research. 

 

Combination of VGG-16 and Logistic Regression 

The fusion of VGG-16 feature extraction with logistic regression presents a compelling approach in the realm of 

wildlife classification, offering a balance between sophisticated feature representation and efficient classification 

algorithms (Tambunan, Rosnelly, & Situmorang, 2023). 

In recent studies, researchers have explored the integration of VGG-16 features with logistic regression to classify 

wildlife species based on image features. This approach has shown promising results in identifying individual species, 

monitoring population dynamics, and facilitating conservation efforts (Hooten, Lu, Garlick, & Powell, 2020; 

Hridayami, Putra, & Wibawa, 2019; Rismiyati & Luthfiarta, 2021). 

Regularization techniques, such as lasso and ridge regularization, play a crucial role in mitigating overfitting and 

enhancing the generalization performance of logistic regression models. By tuning the regularization parameters, 

researchers can control the complexity of the model and improve its ability to generalize to unseen data (Qin & Lou, 

2019). 

In summary, the combination of VGG-16 feature extraction with logistic regression holds immense potential in 

advancing wildlife classification efforts. By harnessing the strengths of both approaches, researchers can achieve 

robust and interpretable classification outcomes, contributing to biodiversity monitoring, conservation initiatives, and 

ecological research. Continued research efforts focused on refining model architectures, optimizing regularization 

techniques, and addressing domain-specific challenges are essential for unlocking the full potential of this approach 

in wildlife classification. 

 

METHOD 

Dataset 

The study utilizes a dataset comprising images of wild elephant species originating from Africa and Asia, procured 

through Google image searches. For data collection, we employed specific keywords, namely "Loxodonta africana" 

and "Loxodonta cyclotis," to retrieve images of African elephants, while "Elephas maximus" was utilized for sourcing 

images of Asian elephants. Each elephant species is represented by a total of 100 images, exemplified by samples 

depicted in Figure 1.  

 

Fig 1. Dataset Sample 

 

The extracted features from the 200 elephant images are utilized as the dataset for the subsequent processes, 

namely the determination of the optimal lambda value and the classification of elephant species. In determining the 

most optimal lambda value, the dataset is divided using an 80:20 sampling ratio, where 80% of the data is used as 

training data and 20% of the data is used as test data to determine the performance of each model. 
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Feature Extraction 

The study utilizes the VGG-16 architecture to extract features from the dataset of elephant images. VGG-16, a 

variant of convolutional network (ConvNet) architectures, integrates a combination of 32 and 64 filters in its 

convolutional layers (Tanuwijaya & Roseanne, 2021). The specific configuration of the VGG-16 architecture utilized 

in this study is depicted in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. VGG-16 Architecture 

Below is the explanation of the VGG-16 architecture depicted in Figure 2 above: 

1. Input Image 

The input to the ConvNets is a fixed-size 224 × 224 RGB image, marking the initial input stage in the 

architecture. 

2. Convolutional Layers 

Images are processed through a stack of convolutional layers with small receptive fields of 3 × 3, denoted as the 

Conv-32 and Conv-64 layers in the architecture. 

3. Pooling Layers 

Spatial pooling is conducted via max-pooling layers, succeeding some convolutional layers. Max-pooling is 

executed over a 2 × 2 pixel window with a stride of 2, facilitating downsampling and feature retention. 

4. Fully-Connected (FC) Layers 

Subsequent to the convolutional layers, three Fully-Connected (FC) layers are employed. The first two FC layers 

consist of 4096 channels each, signifying the Flatten step, wherein the output is flattened into a vector of 4096 

dimensions. 

5. Activation Function 

All hidden layers, encompassing convolutional and fully connected layers, are endowed with the rectification 

(ReLU) non-linearity. ReLU facilitates the introduction of non-linearity, aiding the network in learning intricate 

patterns and relationships within the data. 

 

Model Configuration 

The classification process of wild elephant species in this study utilizes the Logistic Regression algorithm, 

incorporating variations of lasso and ridge regularization. Logistic Regression is chosen for its simplicity, 

computational efficiency, capability to handle linear separability, regularization options, and probability estimation 

abilities, making it suitable for classification problems with image feature extraction datasets (Adeli, Li, Kwon, Zhang, 

& Pohl, 2020). In classifying African and Asian elephant species using a dataset consisting of 4096 image features 

extracted by VGG-16, the logistic regression algorithm fits a logistic function to the input features through the 

following steps: 

1. Input Representation 

Initially, each image is represented by a vector of 4096 features obtained from the VGG-16 model, capturing 

various aspects and patterns learned during the convolutional and pooling layers of the VGG-16 architecture.  

2. Probability Estimation 

Logistic regression estimates the probability of each elephant image belonging to either the African or Asian 

species. It accomplishes this by applying a linear combination of the input features, followed by passing the 
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result through the logistic function, which maps the linear combination to a value between 0 and 1, representing 

the probability of the image belonging to a particular species. 

3. Model Training 

Labeled examples of elephant images are used to train the logistic regression model, which adjusts its parameters 

(coefficients) during the training process to minimize the difference between predicted probabilities and the 

actual labels of the training data.  

4. Classification 

Once trained, the logistic regression model classifies new images by computing the probability of each image 

belonging to the African or Asian species using the learned parameters. The image is then assigned to the species 

with the highest probability. 

Regularization is crucial in logistic regression algorithms to prevent overfitting, where the model becomes overly 

complex and fails to generalize patterns to new data. Regularization controls the model's complexity and enhances 

performance on unseen test data. In this study, variations of lasso and ridge regularization are employed, utilizing the 

lasso regularization formula (1) and the ridge regularization formula (2) as follows (Kolluri, Kotte, Phridviraj, & 

Razia, 2020): 

𝐶𝑜𝑠𝑡(𝑋, 𝑦, 𝜃) = −
1

𝑚
∑ |𝑦𝑖 log(ℎ0𝑋𝑖) + (1 − 𝑦𝑖) log(1 − ℎ0𝑋𝑖)|𝑚

𝑖=1 + λ ∑ 𝜃𝑗
𝑛
𝑗=1   (1) 

𝐶𝑜𝑠𝑡(𝑋, 𝑦, 𝜃) = −
1

𝑚
∑ |𝑦𝑖 log(ℎ0𝑋𝑖) + (1 − 𝑦𝑖) log(1 − ℎ0𝑋𝑖)|𝑚

𝑖=1 + λ ∑ 𝜃𝑗
2𝑛

𝑗=1   (2) 

where: 

𝐶𝑜𝑠𝑡(𝑋, 𝑦, 𝜃) : the logistic regression cost function with lasso or ridge regularization 

𝑚  : the number of training examples 

𝑛  : the number of features 

𝑋𝑖  : the matrix of input features 

𝑦𝑖  : the vector of labels 

𝜃𝑗   : the vector of model parameters 

ℎ0𝑋𝑖  : the logistic function 

λ  : the regularization parameter 

Various values of λ (0.05, 0.1, 0.5, 1, 2, and 3) are employed to determine the optimal parameters for each model. 

Each λ variation is utilized in the classification process using the training data, which is subsequently evaluated based 

on performance. The training data, obtained from an 80:20 sampling ratio, is utilized for the classification process, 

and the performance is evaluated using cross-validation techniques. The λ values yielding the best evaluations for 

each model are then utilized as the final parameters for each model in the subsequent classification process. 

 

Model Evaluation 

This study employs cross-validation method to evaluate the model, both in the process of finding the optimal 

lambda value and comparing the performance of lasso and ridge regularization in classifying elephant images. The 

metrics used are accuracy, precision, and recall, obtained from the calculation results of values in the confusion matrix 

table, using the following formulas (Riyadi, Hartono, & Wanayumini, 2023): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  (4) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  (5) 

 

𝐹1 =
2 𝑋 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (6) 

 

RESULTS 

 
A. Best Lambda for Regularization 

By utilizing 80% of the dataset as training data and variations of λ values at 0.05, 0.1, 0.5, 1, 2, and 3, the evaluation 

results of 10-fold cross-validation are obtained as shown in Table 1. 
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Table 1. Performance Results With Various λ 

  

λ Model Accuracy Precision Recall F1 

0.05 
Logistic Lasso 0,500 0,333 0,250 0,500 

Logistic Ridge 0,825 0,825 0,826 0,825 

0.1 
Logistic Lasso 0,700 0,698 0,705 0,700 

Logistic Ridge 0,850 0,850 0,850 0,850 

0.5 
Logistic Lasso 0,800 0,800 0,801 0,800 

Logistic Ridge 0,875 0,875 0,875 0,875 

1 
Logistic Lasso 0,838 0,837 0,838 0,838 

Logistic Ridge 0,881 0,881 0,881 0,881 

2 
Logistic Lasso 0,856 0,856 0,856 0,856 

Logistic Ridge 0,888 0,888 0,888 0,888 

3 
Logistic Lasso 0,844 0,844 0,844 0,844 

Logistic Ridge 0,888 0,888 0,888 0,888 

 

Based on the performance metrics observed in Table 1 for various λ values in logistic lasso and logistic ridge 

regularization, several patterns can be discerned. For logistic lasso regularization, the accuracy, precision, recall, and 

F1 score generally increase as the λ value increases from 0.05 to 1, reaching its peak at λ = 2, and then slightly 

decreases at λ = 3. This indicates that as the regularization strength increases, the model's generalization ability 

improves up to a certain point, after which further regularization might lead to some loss in performance. On the other 

hand, for logistic ridge regularization, the performance metrics exhibit a consistent and incremental improvement as 

the λ value increases from 0.05 to 3. This suggests that the regularization parameter effectively enhances the model's 

generalization ability without causing significant performance degradation.  

Considering the performance results, the best λ value for logistic lasso regularization is λ = 2, where it achieves 

relatively high accuracy, precision, recall, and F1 score. For logistic ridge regularization, λ = 3 is the most optimal 

choice as it consistently yields the highest performance across all metrics without signs of overfitting. Overall, the 

choice of the best λ value depends on the trade-off between model complexity and generalization performance. λ 

values that strike a balance between these factors, such as 2 for logistic lasso and 3 for logistic ridge, are preferable as 

they provide robust performance while controlling for overfitting. 

 

Models Performance 

After obtaining the optimal λ values for each regularization (λ = 2 for lasso and λ = 3 for ridge), these values are 

utilized in each model to classify the VGG-16 feature extraction results. Table 2 shows the confusion matrix generated 

by both models in classifying the 200 elephant images. 

 

Table 2 

Confusion Matrix of Lasso and Ridge Regularization 

  

Model Actual 
Predicted 

African Asian 

Logistic Lasso 
African 15 5 

Asian 6 14 

Logistic Ridge 
African 17 3 

Asian 5 15 

 

Based on the confusion matrix results above, we observe the following: 

1. Logistic Lasso Model 
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Out of the 20 actual African elephant images, the model correctly predicted 15, while misclassifying 5 as Asian 

elephants. Similarly, out of the 20 actual Asian elephant images, the model correctly predicted 14, but 

misclassified 6 as African elephants. 

2. Logistic Ridge Model 

For the logistic ridge model, out of the 20 actual African elephant images, it correctly predicted 17, with 3 

misclassifications as Asian elephants. Likewise, out of the 20 actual Asian elephant images, the model correctly 

predicted 15, but misclassified 5 as African elephants. 

Both models show relatively similar performance in classifying African and Asian elephant images, with slight 

variations in the number of correct predictions and misclassifications. To further analyze the misclassified images 

from each model, Table 3 illustrates the distribution of actual and predicted labels for each misclassified class. 

 

Table 3.Misclassified Class Feature Statistic 

  

Actual Predicted Model Image Name 
Feature Statistics 

Mean Median Dispersion Min Max 

African Asian 

Logistic Lasso 

84 0.485 0.204 126.353 0 394.917 

46 0.528 0.296 118.949 0 362.973 

71 0.493 0.221 123.798 0 357.961 

91 0.502 0.232 123.879 0 380.852 

19 0.519 0.25 122.518 0 371.414 

Logistis Ridge 84 0.485 0.204 126.353 0 394.917 

 71 0.493 0.221 123.798 0 357.961 

 91 0.502 0.232 123.879 0 380.852 

Asian African 

Logistic Lasso 

31 0.535 0.303 118.139 0 366.112 

21 0.479 0.205 126.416 0 415.546 

88 0.535 0.278 120.404 0 368.778 

80 0.506 0.235 123.907 0 371.055 

57 0.484 0.222 124.149 0 359.476 

16 0.501 0.244 122.548 0 391.343 

Logistis Ridge 

21 0.479 0.205 126.416 0 415.546 

88 0.535 0.278 120.404 0 368.778 

57 0.484 0.222 124.149 0 359.476 

16 0.501 0.244 122.548 0 391.343 

60 0.451 0.152 129.721 0 368.038 

 

Despite variations in feature statistics and image names, some patterns emerge. For instance, in the Logistic Lasso 

model, images 84, 71, and 91 were misclassified as Asian elephants, while images 21, 88, and 57 were misclassified 

as African elephants. These misclassifications suggest that certain images may possess ambiguous features or 

contextual cues that challenge the classification models. Similarly, in the Logistic Ridge model, images 21, 88, and 

57 were also misclassified as African elephants, indicating consistent misclassification across different regularization 

techniques. Conversely, image 60 was misclassified as an Asian elephant in the Logistic Ridge model but not in the 

Logistic Lasso model, suggesting that this image may possess unique features that influence classification differently 

across models. 

Upon further analysis of the misclassified images from both the Logistic Lasso and Logistic Ridge models, it's 

evident that the discrepancies between the actual and predicted labels may stem from various factors: 

1. Feature Variability 

The wide range of feature statistics across misclassified images indicates the diverse characteristics present in 

the dataset. These variations in features could lead to ambiguity in classification, making it challenging for the 

models to accurately distinguish between African and Asian elephants. 

2. Contextual Complexity 
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Some images may contain contextual cues or environmental factors that influence the classification process. For 

example, images captured in different habitats or lighting conditions may exhibit distinct features that are not 

effectively captured by the models. 

3. Model Sensitivity 

The sensitivity of the logistic regression models to different feature patterns and regularization parameters could 

contribute to misclassifications. Certain images may possess subtle features that are difficult for the models to 

discern, leading to errors in prediction. 

4. Sample Representation 

The distribution of samples across different elephant species and environmental conditions may not be evenly 

represented in the dataset. As a result, the models may not have sufficient training data to effectively learn and 

generalize the underlying patterns, leading to misclassifications. 

5. Model Complexity 

The complexity of the logistic regression models, combined with the regularization techniques applied, may 

affect their ability to generalize to unseen data. Overly complex models may be prone to overfitting, while overly 

simplistic models may struggle to capture the intricacies of the dataset. 

Overall, the misclassifications observed in both models highlight the complexities involved in classifying wild 

elephant species based on image features. 

 

DISCUSSION 

Optimum Lambda for Lasso and Ridge Regularization 

The analysis of regularization parameter (λ) optimization in logistic lasso and logistic ridge regression reveals 

distinct patterns in model performance. For logistic lasso, as λ increases from 0.05 to 1, there is a noticeable 

improvement in accuracy, precision, recall, and F1 score, peaking at λ = 2, followed by a slight decline at λ = 3. This 

suggests that moderate regularization enhances the model's generalization ability, with λ = 2 striking an optimal 

balance between bias and variance. Conversely, logistic ridge regularization demonstrates consistent performance 

improvement with increasing λ values from 0.05 to 3, indicating effective regularization without significant 

performance degradation. The most optimal λ value for logistic ridge is found to be 3, offering high accuracy and 

stability across all metrics. These findings underscore the importance of λ selection in balancing model complexity 

and generalization performance. λ = 2 for logistic lasso and λ = 3 for logistic ridge emerge as robust choices, ensuring 

optimal performance while mitigating the risk of overfitting. Ultimately, the decision on the best λ value hinges on the 

specific trade-off between model complexity and predictive accuracy, with the identified λ values providing a solid 

foundation for achieving reliable and generalizable classification outcomes. 

 

Misclassification Analysis 

The performance evaluation of the logistic lasso and logistic ridge models, utilizing optimal regularization 

parameters (λ = 2 for lasso and λ = 3 for ridge), yielded insightful findings regarding their classification performance 

on VGG-16 feature extraction results of 200 elephant images. The confusion matrix analysis revealed similar 

performance between the two models, albeit with slight variations in correct predictions and misclassifications. 

Notably, both models exhibited a degree of misclassification, with logistic lasso misclassifying 11 images (5 African 

and 6 Asian elephants) and logistic ridge misclassifying 8 images (3 African and 5 Asian elephants). Further 

examination of misclassified images unveiled potential factors contributing to these discrepancies, including feature 

variability, contextual complexity, model sensitivity, sample representation, and model complexity. These findings 

underscore the multifaceted nature of wildlife classification based on image features, highlighting the need for robust 

model training, feature representation, and consideration of contextual factors to improve classification accuracy. 

Despite the challenges posed by these factors, the analysis provides valuable insights into the limitations and 

opportunities for enhancing the efficacy of classification models in wildlife conservation efforts. 

 

CONCLUSION 

The investigation into regularization parameter optimization and model performance in the classification of 

wildlife based on image features yielded valuable insights and implications for practical application and further 

research. In optimizing λ values for logistic lasso and logistic ridge regularization, λ = 2 emerged as the optimal choice 

for logistic lasso, striking a balance between model complexity and generalization performance, while λ = 3 proved 

to be the most effective for logistic ridge, ensuring high accuracy and stability across all metrics. These findings 

underscore the importance of λ selection in achieving robust classification outcomes, with λ values of 2 for logistic 
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lasso and 3 for logistic ridge serving as reliable parameters for future model deployment. Additionally, the analysis of 

misclassification patterns revealed the multifaceted nature of wildlife classification, with factors such as feature 

variability, contextual complexity, model sensitivity, sample representation, and model complexity influencing 

classification accuracy. Despite these challenges, the study provides valuable insights into the complexities of wildlife 

classification and highlights avenues for improving model training, feature representation, and contextual 

consideration to enhance classification accuracy in wildlife conservation efforts. Moving forward, further research 

could explore advanced modeling techniques and feature engineering approaches to address the identified limitations 

and optimize classification performance in wildlife conservation applications. 
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