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ABSTRACT 

Puzzles have been recognized for their development as a popular form of entertainment due to their ability to 

intricately challenge the mind while engendering creativity in the player. The development of puzzle games has 

given rise to a new generation of puzzle games characterized by diverse sequences and different image variations. 

With the rapid development of puzzle games, we looked at solving approaches using Genetic Algorithms (GA). In 

this paper, we try to analyze several puzzle games such as Sliding Blocks, Sudoku, Tic-Tac-Toe, and Jigsaw that 

can be solved using GA. We found that 120 papers have examined the use of GA for puzzle games, and eliminated 

into 14 papers. We evaluated these 14 papers for each puzzle game we selected by comparing the chromosome 

representation, GA operator, GA parameters, and the results. Based on the discussion, the application of GA to 

solve puzzle games can be effectively executed with a high degree of accuracy. Puzzle games that use measurement 

methods such as Sliding Block, Sudoku, and Jigsaw run in a similar pattern. What is common to all of them is that 

the chromosomes are represented as matrices or arrays in all cases, and standard genetic operators such as selection, 

crossover, and mutation are used. The population size is large, often 1000 chromosomes, and parameters such as 

mutation rate are kept low, around 5%. On the other hand, the performance of GA for solving Tetris and Tic-Tac-

Toe from each publication cannot be compared due to different measurement methods and metrics. 
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INTRODUCTION 

Puzzle games have long been a type of entertainment that challenges the mind while stimulating creativity. The 

term "puzzle" was derived from the old French language, namely "Aposer," which was then transformed to “Pose” or 

“Pusle” in ancient English, which was then altered to puzzle. A jigsaw puzzle game was discovered in 1766 as the 

first puzzle game. That year, John Spilsbury, an excellent cartographer, made a map on a sheet of wood and chopped 

it into parts based on nation lines. In the 1800s, jigsaw puzzles, which were first solely used to aid in geography 

learning, evolved into puzzles utilized by all groups in formats like paintings or transportation imagery. 

The development of puzzle games reflects that, over time the interest in games continues to grow. Along with the 

growing appeal, puzzle games are also adaptive to the time. Puzzles, which were first recognized as learning education 

aids, have become broad entertainment activities. In 2020, Puzzle games took first place as mobile games played in 

the U.S., U.K., Japan, and South Korea. Apart from that, puzzle games also generate, generating $6.9 billion in revenue 

in one year (Gu, 2021). These numbers show that puzzle games are still trending and becoming a challenge for 

developers to find innovative methods to create exciting playing experiences. 

With the increase in intricacies and sophisticated strategy required to win the game, puzzle games also attract the 

attention of researchers to develop machine learning algorithms to win the game without human involvement. Genetic 

Algorithm is one of the algorithms that take such a challenge. 

The genetic algorithm is a computational technique utilized for addressing optimization issues, including both 

restricted and unconstrained scenarios. This approach draws inspiration from the principles of natural selection, which 

govern the evolutionary processes observed in biological systems (Nayyar, Le, & Nguyen, 2018). The genetic 

algorithm repeatedly modifies a population of individual solutions. At each step, the genetic algorithm randomly 

selects individuals from the current population and uses them as parents to produce the children for the next generation. 

Over successive generations, the population "evolves" toward an optimal solution (Sharma,2022). 

In this research, we will explore the integration of genetic algorithms as answers in developing increasingly 

complex puzzles. We hope to make a meaningful contribution to the understanding and development of puzzle games 

and genetic algorithms, as well as unlock the potential for innovation in the development of puzzle games that continue 

to grow. Therefore, this study will offer significant insights for those in the gaming industry, including gamers, 
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developers, and researchers. With an overall objective of enhancing the level of engagement and complexity within 

the puzzle player community, the primary aim is to develop an exciting gaming experience. 

 

METHOD 

This review paper utilized the Publish or Perish software to narrow the scope of the search by entering "Genetic 

Algorithm" in the Title Words box and "Puzzle Game" in the Keywords box. One hundred and twenty papers were 

gathered for reference using this parameter. Following a filtering process, 14 publications were eventually accepted 

for discussion as genetic algorithm approaches to puzzle game solutions in this review paper. The reason for the 

decrease from 120 to 14 publications was due to the accessibility to the previous publications and the relevancy of the 

main topic that the author discussed. 

 

RESULTS 

Researchers have chosen puzzle games as experimental problems to explore and develop optimal solutions and 

strategies using genetic algorithms. When approaching a puzzle game using a genetic algorithm, several things must 

be considered, such as encoding, accuracy, and uniqueness. Considering the many puzzle games that have been 

developed to date. In this research, the author chose the following puzzle games which could use a genetic algorithm 

approach for solving. 

Genetic algorithms are based on the principles of genetics and evolution; in 1975, John Holland and one of his 

students at the University of Michigan developed this idea in his book “Adaptation in Natural and Artificial Systems.” 

He described how to apply the principles of natural evolution to optimization problems and built the Genetic 

Algorithms. Holland’s theory has been further developed, and now, Genetic Algorithms (GAs) stand up as a powerful 

tool for solving search and optimization problems (Sivanandam & Deepa, 2008). 

Since the goal of a genetic algorithm is to look like natural environments, most of the necessary vocabulary comes 

from the life sciences. Although this language is used to describe biological entities, the entities in genetic algorithms 

are much simpler to understand (Mitchell, M. 1995). 

 
Fig. 1 Principles of Genetics and Evolution 

  
As seen above, a gene contains an allele, the gene's value (represented by the number 1). At the same time, a 

chromosome is a sequence of genes, an individual is a collection of chromosomes, and a population is a collection of 

individuals. In its basic principles, a genetic algorithm has a cycle that can be explained and depicted through the 

following flowchart. In the flowchart, there are basic stages of how genetic algorithms work to solve various problems. 
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Fig. 2 Genetic Algorithm flowchart 

 
 This concludes our explanation of genetic algorithms, the preceding tables and flowcharts are our attempts to 

simplify the explanation of genetic algorithms. In this explanation, we focus more on explaining the application of 

genetic algorithms in various puzzle games, such as sliding blocks, sudoku, tetris, tic-tac-toe, and jigsaw. We will 

outline how this genetic algorithm approach is used in the context of these games to achieve efficient and optimal 

solutions. 

Sliding Block 

Slide Box Puzzle, is a puzzle that generally consists of 15 boxes, numbered 1 to 15, that can be shifted horizontally 

or vertically in a four-by-four grid that has one space between its 16 locations. The puzzle aims to arrange the boxes 

in numerical order using only the extra space in the box to slide the numbered titles. These pieces can be simple shapes 

or have various features such as colors, patterns, sections of a larger picture (similar to a jigsaw puzzle), numbers, or 

letters (Britannica, T. Editors of Encyclopaedia, 2009). 

Suh and Lee (Suh et al., 1989) proposed GA to solve the sliding block case. Different from traditional methods, 

Suh’s algorithm uses an operator-oriented representation scheme, where each move in the solution sequence is 

represented as ((x,y),o), where “(x,y)” denotes the location of its initial state and “o” represents as 0,1,2,3 denote 

moves (L, U, R, D). The example of this algorithm is ((2,1),0), ((2,0),1), ((1,0), 2), ((1,1), 3), ((2,1), 2), ((2,2), 1). This 

approach uses two genetic operators which are crossover and directed mutation. Parameters to adjust the algorithm 

are initial length, maximum length, minimum length, maximum generation, population, crossover rate, and mutation 

range. The result for 3x3 puzzles, the moves needed are between 5 to 40 while for 4x4 puzzles, the moves needed are 

between 20 to 40. However, Suh stated that their algorithm had trouble solving sliding block puzzles that require quite 

a long solution sequence/move. 

Sha’ban (Sha'ban et al., 2009) proposed a GA to solve the sliding tile 8-puzzle which is the same as a 3x3 sliding 

block puzzle. The algorithm operates through a cycle of stages, including tournament selection, fitness evaluations, 

crossovers, and mutations. The chromosome is represented as an array of 9 numbers which denotes. The number of 

solutions depends on the number of generations that are inputted. They concluded that the proposed GA to solve the 

sliding tile 8-puzzle is a feasible plan because the proposed heuristic GA can find the solution in a large search space. 
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Table 1. The Comparison of Sliding Block Genetic Algorithm 

Comparison Suh’s GA Shaban’s GA 

Chromosome 

Representative 

a sequence consists of 

((x,y),o) where (x,y) 

is initial position and 

o is the move L, U, R, 

D 

a 3x3 matrix with 1-8 

numbers and a blank 

Operator 
selection, crossover, 

mutation 

selection, crossover, 

mutation 

Parameter 

initial length = 12, 

max generation = 36, 

population = 20, 

crossover rate = 0.7, 

mutation range = 3 

population = 5, 

crossover rate: 0.7, 

mutation rate: 0.011 

Result 

3x3 puzzle solved 

only once  in 5-20 

generation 

3x3 puzzle solved 

several times in 5-25 

generation 

 

Sudoku 

 Sudoku is a popular form of number game. In its simplest and most common configuration, sudoku consists of a 

9 × 9 grid with numbers appearing in some of the squares. The object of the puzzle is to fill the remaining squares, 

using all the numbers 1–9 exactly once in each row, column, and the nine 3 × 3 subgrids. Sudoku is based entirely on 

logic, without any arithmetic involved, and the level of difficulty is determined by the quantity and positions of the 

original numbers (Wilson R, 2023).  

 Mantere (Mantere et al, 2006) proposed GA to solve and rate sudoku puzzles. The chromosome of the algorithm 

as the solution candidate is in the form of an integer array with 81 numbers divided into 9 sub-blocks of 9 numbers. 

Each number in the array represents a possible value for a cell in the sudoku grid. The algorithm applied uniform 

crossover only in the same sub-block and the swap, 3-swap, and insertion mutation with the ratio 50:30:20 

respectively. The population size is 100 and the algorithm runs until it finds the optimal solution in between 100,000 

generations. Mantere stated that there are many algorithms that perform more effectively than GA. However, this 

algorithm succeeded in determining the difficulty rating of sudoku puzzles from the newspaper at that time. 

 

 
Fig. 3 Mutations in Mantere’s GA 

 

 In Afriyudi et al (Afriyudi et al,2008) research, they proposed 3 variants of GA. The first variant's encoding method 

was using roulette-wheel selection, one-point crossover, and mutation. It didn’t fit the problem constraints, resulting 

in suboptimal solutions. The second variant improves this by changing the encoding of the chromosomes to 1-9 integer 

array and multi-point crossover, but it's limited to scenarios with few cells to fill. The third variant combines the 

second variant's encoding method with selection and mutation without crossover processes to overcome these 

limitations. The fitness values are calculated by counting the number of occurrences of the same number in each row, 

column, and region of the Sudoku puzzle. The higher the fitness value, the better the gene is considered. The third 

variant could solve sudoku effectively from very easy, easy, medium, hard, and fiendish difficulty rating. 
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 Kazemi et al (Kazemi et al, 2014) proposed GA to compare their algorithm with Mantere’s algorithm. The 

chromosome is represented as a two-dimensional integer array with 9×9 size with 3 basic rules which are predefined 

numbers that cannot be changed, each row and column contain 1-9 numbers only once, and each 3x3 sub-squares 

contains 1-9 numbers only once. To calculate the fitness function, they formulate it by using the maximum possible 

number of mismatches in a chromosome (max: 81) minus the total number of mismatches in the given chromosome. 

The process of the algorithm will be stopped if the chromosome with the fitness of 81 is found. The best population 

size for this algorithm is 20 and they are also limited to 100,000 generations to compare with Mantere’s GA. Both 

tests are given 100 sudoku puzzles and solved sudoku can be seen in the ‘Count’ column in their publications. 

 

Table 2. The Comparison of Sudoku Genetic Algorithm 

  

Comparison Mantere’s GA Afriyudi’s GA Kazemi’s GA 

Chromosome Representative 

an integer array of 

81 numbers divided 

to 9 sub-blocks 

an integer array of 

only missing 

numbers 

a 2 dimensional 

integer array (9x9) 

Operator 

uniform crossover, 

mutations (swap, 3-

swap, insertion) 

selection, mutation crossover, mutation 

Probability Rate 

swap = 0.5; 

3-swap = 0.3; 

insertion = 0.2 

- 

crossover = 0.65; 

mutation 1 = 0.15; 

mutation 2 = 0.04 

Difficulty Rating 

1 star 100 - 100 

2 stars 69 - 100 

3 stars 46 - 100 

4 stars 26 - 97 

5 stars 23 - 79 

Easy 100 - 100 

Challenging 30 - 51 

Difficult 4 - 17 

Super difficult 6 - 20 

Very easy to Fiendish - solved effectively - 

 

Tetris 

Tetris has been released for virtually every computer and electronic gaming system, and it is often revered as a 

classic. Though numerous sequels have been spawned, Tetris games almost always have the same play mechanics: 

differently shaped blocks drop at varying speeds, and, as the blocks descend, the player must rotate and arrange them 

to create an uninterrupted horizontal row on the screen. When the player forms one or more solid rows, the completed 

rows disappear. The goal of the game is to prevent the blocks from stacking up to the top of the screen for as long as 

possible. Subsequent versions of the game included different modes of play and unique twists, but the overall 

gameplay usually mirrored the original Tetris quite closely (Britannica, T. Editors of Encyclopaedia, 2023). 

In 2004, Flom (Flom et al, 2004) proposed research to show that GA can be used to weight an evaluation function 

for a Tetris game. The process begins with representing the chromosomes of the agents as arrays of 32-bit IEEE float 

numbers. These individuals then run the Tetris game and their performance determines their fitness by the total number 

of lines each agent made. After testing 30 times of 750 generations with 4 types of crossover (uniform, one-point, 

HUX, and reduced surrogate one-point), Flom chose uniform crossover because it has the best result among other 

crossovers by the graph. The result tests are from two different experiments and show that Figure left is total lines 

made while Figure right is pieces-per-line ratio from total average of best individual. 
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Fig. 4 Flom’s GA result by total lines (left) and pieces-per-line ratio (right) 

 

Jason Lewis (Lewis, 2015) proposed a GA to solve an optimization problem for Tetris in 2015. The algorithm 

starts with an initial population of candidate players, each candidate represented by a fixed weight vector in the matrix. 

These weights determine how the player evaluates and selects moves in the game. Tetris that he implemented in this 

paper has the same scoring mechanism as Nintendo’s version of Tetris. The score increases by 2 points for 1 line, 5 

points for 2 lines, 15 points for 3 lines, and 60 points for 4 lines (also known as tetris). 

It is not explicitly mentioned about how the fitness function evaluates each generation. Even so, the result is quite 

surprising. Lewis’ algorithm succeeded to achieve a minimum average score 2.4 per move and equivalent to a 

minimum efficiency of 40% after run through 30 generations with 1000 population and the rate of selection, crossover, 

and mutation being 20%, 40%, and 40% respectively. The result, which was able to make 179,531 moves in 3.9 

minutes, has already demonstrated the effectiveness of the algorithm while a human with one move per second can 

achieve this result in 2 days. 

 

Table 3. The Comparison of Tetris Genetic Algorithm 

 

Comparison Flom’s GA Lewis’s GA 

Chromosome 

Representative 

arrays of 32-bit IEEE 

float numbers 
not mentioned 

Operator(s) uniform crossover 
selection, crossover, 

mutation 

Parameter 

5 (lines made, pile 

height, bumpiness, 

closed holes, wells) 

10 (weighted blocks, 

connected holes, lines 

cleared, roughness, 

tetrises, pit hole 

percent, clearable line, 

deepest well, blocks, 

column holes) 

Result 
4.75091E33 lines 

made 

2.5 points per move 

179,531 moves (in 3.9 

minutes) 

 

Tic-Tac-Toe 

 Tic-tac-toe, an ancient game with origins dating back to 1300 BC in Egypt, is a classic two-player contest played 

on a 3x3 grid(Choi, A. S. (2021) the objective is for each player to strategically place their designated markings, 

typically represented as "X" and "O," with the goal of achieving a line of three of their markings in a row, column, or 

diagonal. 

 Hochmuth (Hochmuth, G, 2003) proposed a successful GA to find a perfect tic-tac-toe strategy in 2003. Hochmuth 
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defined each game states table refers to its genome, which represents 827 distinct genes. The operators are replication, 

mutation, and crossover. Replication in this context means copying one individual into the next generation with 

defined probability and without modification. The mutation will replace each gene with the new random value with 

its probability. The crossover operator is modified, and the number of crosses is chosen so it is represented as a variable 

and evaluated by its probability too. The first experiment failed because of the insufficient population size and different 

values that were performed. After the evaluation, his second experiment succeeded in finding the best solution within 

373 generations after 1688 seconds (28 minutes). From this experiment, Hochmuth concludes that the higher crossover 

probability was likely to cause excessive mutation in the offspring and may therefore have prevented the populations 

from reaching optimality in the end. 

 

 
Fig. 5 Hochmuth’s GA result from first experiment (failed) and second experiment (succeed) 

 

 Anurag et al (Anurag et al, 2008) implemented customized GA to search the no-loss strategy for tic-tac-toe. 

Different from Hochmuth’s GA, they only used 765 game states. It is a 765x10 matrix which means 765 individuals 

and 10 numbers that consist of 9 numbers as the game-state (0 = none, 1 = “X”, 2 = “O”), and the last number as the 

total move. In the GA process, the initial step involves creating a random population of solutions or strategies, followed 

by the design of GA operators like selection, recombination, and mutation to address complex game-playing problems. 

The efficient problem-specific representation allows for a straightforward recombination operator choice, while an 

innovative niching mechanism, the controlled elite-preserving operator, maintains population diversity for better 

solutions. Furthermore, their approach employs a two-tier GA strategy in which both of the players use GA to find the 

strategy of each move. It returned 117 solutions for the first player and 621 solutions for the second player, and there 

are 72,657 no-loss strategies in total from the combination of the first and second player which enhances its 

effectiveness. 

 

 The algorithm proposed by Ling et al (Ling et al, 2011) is learned by a neural network with a double transfer 

function (NNDTF) and trained by a genetic algorithm. It has the purpose of proving that NNDTF can perform better 

than traditional neural networks in playing tic-tac-toe. For the experiment session, a 9-input-1-output neural GA 

network with 8 hidden nodes of NNDTF was trained using 100 patterns over 50,000 iterations, employing a GA with 

a population size of 10, a 0.5 selection probability, and a weight factor of 0.1. The algorithm achieved a fitness value 

of 0.9605, demonstrating its efficiency in modeling the data. 

 Mohammadi (Mohammadi et al, 2013) proposed genetic programming, coevolution, and interactive fitness in 

purpose to develop a human-competitive algorithm for playing tic-tac-toe. The algorithm used a 3x3 matrix to 

represent the chromosome and evaluated by traditional GA operators such as selection, crossover, and mutation. 

 

 

 

 

https://doi.org/10.47709/cnahpc.v6i1.3348


Journal of Computer Networks, Architecture and  

High Performance Computing 
Volume 6, Number 1, January 2024 

https://doi.org/10.47709/cnahpc.v6i1.3348 

 

Submitted : Dec 9, 2023 

Accepted   : Jan 4, 2024 

Published  : Jan 5, 2024 
 

 

* Corresponding author 
  

 

This is an Creative Commons License This work is licensed under a Creative 

Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC 

BY-NC-SA 4.0). 208 
 

Table 4. The Comparison of Tic-tac-toe Genetic Algorithm 

 

Comparison Hochmuth’s GA Anurag’s GA Ling’s GA Mohammadi’s GA 

Chromosome 

Representative 

a mapping table for 

827 distinct game 

states 

an array of 10 

numbers from 765 

game states 

i, j, l of each NNDTF 

outputs 
a 3x3 matrix 

Operator 
replication, 

mutation, crossover 

selection, 

recombination, 

mutation 

crossover, mutation 
crossover, mutation, 

reproduction 

Parameter 

population = 500, 

crossover = 0.15, 

replication = 0.10, 

mutation = 0.001 

population = 100 

population = 10, 

selection prob. = 0.5, 

weight factor = 0.1 

population = 128, 

depth size = 20, 

crossover = 0.8, 

mutation = 0.5, 

replication = 0.2, 

coevolution and 

interactive fitness 

Result 

fittest solution at 

373rd generation 

within 1688 seconds 

(28 minutes) 

chance of no-loss 

strategies for the first 

player is higher than 

the second player 

NNDTF trained with 

GA performs better 

than traditional NN 

achieved a human-

competitive algorithm 

 

Jigsaw 

 A jigsaw puzzle is a collection of varied and irregularly shaped pieces that, when arranged correctly, form a picture 

or map. These puzzles are so named because the image, which is first pasted on wood and then on cardboard, is cut 

into pieces with a jigsaw, which cuts intricate lines and curves (Britannica, T. Editors of Encyclopaedia, 2021). 

 In Sholomon et al.'s work (Sholomon et al, 2013), they demonstrated the GA's ability to solve incredibly large 

jigsaw puzzles, scaling up to 22,834 pieces, a remarkable leap from the previous limit of 3,000 pieces achieved by 

Pomeranz et al (Pomeranz et al, 2011) Their approach, by employing a traditional genetic algorithm and representing 

each puzzle as a (N x M) matrix with initial piece numbers. There are 1,000 chromosomes in the population and 

preserve the top 4 chromosomes in each generation. The crossover operator generates the remaining population with 

a 5% mutation rate. The roulette wheel selection of parent chromosomes results in a single child in each crossover. 

The GA always runs for 100 generations in total. The results from using the GA to solve the jigsaw puzzles ten times 

are exceptional; the average scores are all above 80%, and the best solution achieved a score of 97.12% while finishing 

the puzzle with 10,375 pieces.   

 

𝐷ℎ(𝑥𝑖 , 𝑥𝑗) = √∑𝐿
𝑖=1 ∑3

𝑘=1 (𝑥𝑖(𝑙, 𝐿, 𝑐) − 𝑥𝑗(𝑙, 1, 𝑐))
2 (1) 

𝐷𝑣(𝑥𝑖 , 𝑥𝑗) = √∑𝐿
𝑖=1 ∑3

𝑘=1 (𝑥𝑖(𝐿, 𝑙, 𝑐) − 𝑥𝑗(1, 𝑙, 𝑐))2 (2) 

𝑓(𝑎) =
1

1+∑𝑁𝑖=1 ∑𝑀−1
𝑗=1 𝐷ℎ(𝑐𝑖,𝑐𝑖,𝑗+1)+∑

𝑁−1
𝑖=1 ∑𝑀𝑗=1 𝐷𝑣(𝑐𝑖,𝑗,𝑐𝑖+1,𝑗)

 (3)  

 

 A year later, Hynek (Hynek, 2014) employed GA to solve jigsaw puzzles with a small piece count, utilizing pixel 

border dissimilarity in 24-bit RGB images, in contrast to Toyama's GA, (Toyama et al, 2002) black and white images. 

However, aligning pieces based on pixel values along borders proved challenging due to potential image irregularities. 

This algorithm assesses puzzle solutions as NxM matrices, with puzzle pieces represented as LxLx3 color intensity 

grids. It computes fitness (3) using horizontal dissimilarity (1) and vertical dissimilarity (2) measures with L 

representing the width and the length while c refers to the color of each piece. The algorithm carried 1000 individuals 

for 50 generations. This algorithm has two genetic operators. First, a partially matched crossover makes it simple to 

divide a series of perfectly built parts since crossing sites are chosen at random. Secondly, decimation is a secondary 

genetic operation used to enhance the fraction of fitter individuals in the population. It is often carried out at the start 

of a run. The best result is completing the 225-piece puzzle with 98% accuracy. 
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 In 2020, Guo et al (Guo et al, 2020) proposed a GA solver for small-scale jigsaw puzzles. A (N x M) matrix is 

again used as the chromosome representative. They modified the crossover so that the matched pieces from the 

parent’s chromosome would seek to match pieces within the boundary and add them to the child’s chromosome. If 

the crossover phase can’t get the best-matching piece anymore then the mutation will give the random remaining 

pieces. The population has 1000 chromosomes and maintains the top 2 chromosomes in each generation. The rest of 

the population was generated through crossover, with a 5% mutation rate. Parent chromosomes were selected using 

the roulette wheel method and would be run for 100 generations in each experiment. The proposed algorithm achieved 

98.45% on average for a 626-piece jigsaw puzzle. 

 

Table 5. The Comparison of Jigsaw Genetic Algorithm 

 

Comparison Sholomon’s GA Hynek’s GA Guo’s GA 

Chromosome 

Representative 
a NxM matrix a NxM matrix a NxM matrix 

Operator 
selection, crossover, 

mutation 

selection, partially-

matched crossover, 

decimation 

selection, modified 

crossover, mutation 

Parameter 
population = 1000, 

mutation = 0.05 

population = 1000, 

selection = 0.1, 

hor. dissimilarity, 

ver. dissimilarity 

population = 1000, 

mutation = 0.05 

Result 
97.12% on a 10,375 

pieces puzzle 

98% on a 225 pieces 

puzzle 

98.45% on a 626 

pieces puzzle 

 

DISCUSSION 

Genetic algorithms work well in solving puzzle games. After years of development, genetic algorithm research has 

become more accurate and effective than previous research. On this occasion, we will try to summarize the conclusions 

from each puzzle game using a genetic algorithm. The conclusions we draw are based on the algorithm approach and 

performance matrix. 

 

Sliding Block 

Suh's and Shaban's GA, each employing unique approaches in solving the 3x3 puzzle. Suh's GA represents its 

chromosomes as sequences in the format ((x, y), o), where (x, y) denotes the initial position and o represents moves 

(L, U, R, D). On the other hand, Shaban's GA adopts a 3x3 matrix representation with numbers 1-8 and a blank space. 

Both algorithms use common genetic operators, including selection, crossover, and mutation. Suh's GA incorporates 

additional parameters such as initial length and mutation range. 

Suh's Genetic Algorithm involves a population of 20 individuals, an initial length of 12, a maximum of 36 

generations, a crossover rate of 0.7, and a mutation range of 3. This algorithm successfully solves the 3x3 puzzle 

within 5-20 generations. On the other hand, Shaban's Genetic Algorithm operates with a smaller population of 5, a 

crossover rate of 0.7, and a mutation rate of 0.011. Despite its more concise parameter set, Shaban's GA achieves the 

goal of solving the 3x3 puzzle in 5-25 generations. 

 

Sudoku 

Mantere's GA focuses on solving and rating Sudoku puzzles using an integer array representation with 81 numbers 

divided into 9 sub-blocks. It employs uniform crossover and mutations such as swap, 3-swap, and insertion. Afriyudi 

et al. proposed three variants of GA with different encoding methods and variations in crossover and mutation 

strategies, addressing constraints and improving solution effectiveness for Sudoku puzzles. Kazemi et al. introduced 

a GA that utilizes a two-dimensional integer array with specific rules for encoding and fitness calculation, aiming to 

compare its performance with Mantere's GA. 

Based on performance metrics, Mantere's GA successfully determines the difficulty rating of Sudoku puzzles, even 

though it may not outperform other algorithms in terms of solving efficiency. Afriyudi's third variant of GA effectively 

solves Sudoku puzzles with varying difficulty ratings, demonstrating adaptability to different challenge levels. 
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Kazemi's GA achieves specific difficulty ratings for solved Sudoku puzzles, and its performance is compared with 

Mantere's GA using 100 puzzles. 

 

Tetris 

Flom's GA for Tetris employs arrays of 32-bit IEEE float numbers as chromosome representatives. It utilizes the 

uniform crossover operator and focuses on optimizing parameters related to lines made, pile height, bumpiness, closed 

holes, and wells. Lewis's GA adopts a different approach, incorporating selection, crossover, and mutation operators. 

The specific chromosome representation is not mentioned, but the algorithm optimizes 10 parameters related to 

weighted blocks, connected holes, lines cleared, roughness, tetrises, pit hole percent, clearable line, deepest well, 

blocks, and column holes. 

Based on performance metrics, Flom's GA achieves an impressive result of 4.75091E33 lines made, emphasizing 

the algorithm's effectiveness in optimizing Tetris gameplay for high-line production. Lewis's GA demonstrates 

performance with a result of 2.5 points per move, indicating its ability to optimize Tetris gameplay in terms of scoring 

efficiency. Additionally, it achieves 179,531 moves in 3.9 minutes, highlighting the algorithm's computational 

efficiency. 

 

Tic-Tac-Toe 

Hochmuth's GA makes use of crossover, mutation, and replication operators together with a mapping table that 

covers 827 different game states. Using a range of 10 values selected from 765 game states, Anurag's GA uses 

recombination, mutation, and selection to represent its chromosomes. Ling's GA uses crossover and mutation and uses 

the i, j, and l outputs from each NNDTF as its chromosomal representation. Mohammadi's GA uses crossover, 

mutation, and reproduction operations together with a 3x3 matrix as its chromosomal representation to achieve a 

human-competitive algorithm through interactive fitness and coevolution. 

Based on performance metrics, Hochmuth's GA is notable for reaching its fittest solution in 1688 seconds at the 

373rd generation. Anurag's GA, with a population of 100, shows that the first player has a greater probability of no-

loss strategies than the second player. When trained using a Genetic Algorithm, Ling's proposed method performs 

better than conventional neural networks with a population of 10, a selection probability of 0.5, and a weight factor of 

0.1. Using coevolution and interactive fitness, Mohammadi's GA achieves a human-competitive algorithm with a 

population of 128 and a depth size of 20, as well as specific crossover, mutation, and replication rates. Each method 

solves the Tic-Tac-Toe issue from a different angle, showcasing the versatility and flexibility of genetic algorithms in 

a variety of forms and tactics. 

 

Jigsaw 

The chromosome representative used in the Jigsaw Genetic Algorithms put out by Sholomon, Hynek, and Guo is 

an NxM matrix. Using a population of 1000, Sholomon's method makes use of crossover, mutation, and selection 

operators with a 0.05 mutation rate. Hynek's GA, which likewise makes use of a NxM matrix, has the following 

characteristics: a population size of 1000, a selection rate of 0.1, and considerations for both horizontal and vertical 

dissimilarity. It uses selection, partially-matched crossover, and decimation. Guo's GA uses a population of 1000 and 

a mutation rate of 0.05. It uses selection, modified crossover, and mutation. Its matrix representation is comparable to 

Guo's. Even while all algorithms share the same chromosomal representation, they bring distinct differences in their 

operators and parameters, which indicate different approaches to solving jigsaw puzzles. 

On a large 10,375-piece puzzle, Sholomon's GA performed admirably, with a success rate of 97.12%. Hynek's GA 

performed better, using a mix of selection, partially-matched crossover, and decimation to achieve a high success rate 

of 98% on a smaller 225-piece puzzle. Using mutation, modified crossover, and selection, Guo's GA demonstrated an 

astounding 98.45% success rate on a 626-piece puzzle. These results demonstrate how well these Jigsaw Genetic 

Algorithms work to solve puzzles of different levels of difficulty. 

 

CONCLUSION 

Based on the results and discussion section, the authors found that the application of GAs to solve puzzle games 

is executed effectively with a high level of accuracy. The authors concluded that there are puzzle games that already 

use the same measurement method for their performance such as Sliding Block, Sudoku, and Jigsaw. On the other 

hand, the performance of GAs to solve Tetris and Tic-Tac-Toe from each publication cannot be comparable due to 

different measurement methods and metrics. For future development, the authors suggest the existence of measuring 
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parameters so that the performance metrics can be measured using the same method to make it easier to carry out 

further development. 
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