
Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 1, January 2024

https://doi.org/10.47709/cnahpc.v6i1.3348

Submitted : Dec 9, 2023

Accepted : Jan 4, 2024

Published : Jan 5, 2024

* Corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0). 201

Using Genetic Algorithm to Solve Puzzle Games: A Review

Iksan Bukhori1), Jason Felix2), Saddam Ali3)
1)2)3)Study Program of Electrical Engineering, President University, Bekasi 17550, Indonesia
1)iksan.bukhori@president.ac.id, 2)jason.felix@studen.president.ac.id, 3)saddam.ali@student.president.ac.id

ABSTRACT

Puzzles have been recognized for their development as a popular form of entertainment due to their ability to

intricately challenge the mind while engendering creativity in the player. The development of puzzle games has

given rise to a new generation of puzzle games characterized by diverse sequences and different image variations.

With the rapid development of puzzle games, we looked at solving approaches using Genetic Algorithms (GA). In

this paper, we try to analyze several puzzle games such as Sliding Blocks, Sudoku, Tic-Tac-Toe, and Jigsaw that

can be solved using GA. We found that 120 papers have examined the use of GA for puzzle games, and eliminated

into 14 papers. We evaluated these 14 papers for each puzzle game we selected by comparing the chromosome

representation, GA operator, GA parameters, and the results. Based on the discussion, the application of GA to

solve puzzle games can be effectively executed with a high degree of accuracy. Puzzle games that use measurement

methods such as Sliding Block, Sudoku, and Jigsaw run in a similar pattern. What is common to all of them is that

the chromosomes are represented as matrices or arrays in all cases, and standard genetic operators such as selection,

crossover, and mutation are used. The population size is large, often 1000 chromosomes, and parameters such as

mutation rate are kept low, around 5%. On the other hand, the performance of GA for solving Tetris and Tic-Tac-

Toe from each publication cannot be compared due to different measurement methods and metrics.

Keywords: Genetic Algorithms, Jigsaw, Puzzle Games, Sliding Block, Sudoku, Tetris, Tic-Tac-Toe

INTRODUCTION

Puzzle games have long been a type of entertainment that challenges the mind while stimulating creativity. The

term "puzzle" was derived from the old French language, namely "Aposer," which was then transformed to “Pose” or

“Pusle” in ancient English, which was then altered to puzzle. A jigsaw puzzle game was discovered in 1766 as the

first puzzle game. That year, John Spilsbury, an excellent cartographer, made a map on a sheet of wood and chopped

it into parts based on nation lines. In the 1800s, jigsaw puzzles, which were first solely used to aid in geography

learning, evolved into puzzles utilized by all groups in formats like paintings or transportation imagery.

The development of puzzle games reflects that, over time the interest in games continues to grow. Along with the

growing appeal, puzzle games are also adaptive to the time. Puzzles, which were first recognized as learning education

aids, have become broad entertainment activities. In 2020, Puzzle games took first place as mobile games played in

the U.S., U.K., Japan, and South Korea. Apart from that, puzzle games also generate, generating $6.9 billion in revenue

in one year (Gu, 2021). These numbers show that puzzle games are still trending and becoming a challenge for

developers to find innovative methods to create exciting playing experiences.

With the increase in intricacies and sophisticated strategy required to win the game, puzzle games also attract the

attention of researchers to develop machine learning algorithms to win the game without human involvement. Genetic

Algorithm is one of the algorithms that take such a challenge.

The genetic algorithm is a computational technique utilized for addressing optimization issues, including both

restricted and unconstrained scenarios. This approach draws inspiration from the principles of natural selection, which

govern the evolutionary processes observed in biological systems (Nayyar, Le, & Nguyen, 2018). The genetic

algorithm repeatedly modifies a population of individual solutions. At each step, the genetic algorithm randomly

selects individuals from the current population and uses them as parents to produce the children for the next generation.

Over successive generations, the population "evolves" toward an optimal solution (Sharma,2022).

In this research, we will explore the integration of genetic algorithms as answers in developing increasingly

complex puzzles. We hope to make a meaningful contribution to the understanding and development of puzzle games

and genetic algorithms, as well as unlock the potential for innovation in the development of puzzle games that continue

to grow. Therefore, this study will offer significant insights for those in the gaming industry, including gamers,

https://doi.org/10.47709/cnahpc.v6i1.3348
mailto:iksan.bukhori@president.ac.id
mailto:jason.felix@studen.president.ac.id
mailto:saddam.ali@student.president.ac.id

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 1, January 2024

https://doi.org/10.47709/cnahpc.v6i1.3348

Submitted : Dec 9, 2023

Accepted : Jan 4, 2024

Published : Jan 5, 2024

* Corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0). 202

developers, and researchers. With an overall objective of enhancing the level of engagement and complexity within

the puzzle player community, the primary aim is to develop an exciting gaming experience.

METHOD

This review paper utilized the Publish or Perish software to narrow the scope of the search by entering "Genetic

Algorithm" in the Title Words box and "Puzzle Game" in the Keywords box. One hundred and twenty papers were

gathered for reference using this parameter. Following a filtering process, 14 publications were eventually accepted

for discussion as genetic algorithm approaches to puzzle game solutions in this review paper. The reason for the

decrease from 120 to 14 publications was due to the accessibility to the previous publications and the relevancy of the

main topic that the author discussed.

RESULTS

Researchers have chosen puzzle games as experimental problems to explore and develop optimal solutions and

strategies using genetic algorithms. When approaching a puzzle game using a genetic algorithm, several things must

be considered, such as encoding, accuracy, and uniqueness. Considering the many puzzle games that have been

developed to date. In this research, the author chose the following puzzle games which could use a genetic algorithm

approach for solving.

Genetic algorithms are based on the principles of genetics and evolution; in 1975, John Holland and one of his

students at the University of Michigan developed this idea in his book “Adaptation in Natural and Artificial Systems.”

He described how to apply the principles of natural evolution to optimization problems and built the Genetic

Algorithms. Holland’s theory has been further developed, and now, Genetic Algorithms (GAs) stand up as a powerful

tool for solving search and optimization problems (Sivanandam & Deepa, 2008).

Since the goal of a genetic algorithm is to look like natural environments, most of the necessary vocabulary comes

from the life sciences. Although this language is used to describe biological entities, the entities in genetic algorithms

are much simpler to understand (Mitchell, M. 1995).

Fig. 1 Principles of Genetics and Evolution

As seen above, a gene contains an allele, the gene's value (represented by the number 1). At the same time, a

chromosome is a sequence of genes, an individual is a collection of chromosomes, and a population is a collection of

individuals. In its basic principles, a genetic algorithm has a cycle that can be explained and depicted through the

following flowchart. In the flowchart, there are basic stages of how genetic algorithms work to solve various problems.

https://doi.org/10.47709/cnahpc.v6i1.3348

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 1, January 2024

https://doi.org/10.47709/cnahpc.v6i1.3348

Submitted : Dec 9, 2023

Accepted : Jan 4, 2024

Published : Jan 5, 2024

* Corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0). 203

Fig. 2 Genetic Algorithm flowchart

 This concludes our explanation of genetic algorithms, the preceding tables and flowcharts are our attempts to

simplify the explanation of genetic algorithms. In this explanation, we focus more on explaining the application of

genetic algorithms in various puzzle games, such as sliding blocks, sudoku, tetris, tic-tac-toe, and jigsaw. We will

outline how this genetic algorithm approach is used in the context of these games to achieve efficient and optimal

solutions.

Sliding Block

Slide Box Puzzle, is a puzzle that generally consists of 15 boxes, numbered 1 to 15, that can be shifted horizontally

or vertically in a four-by-four grid that has one space between its 16 locations. The puzzle aims to arrange the boxes

in numerical order using only the extra space in the box to slide the numbered titles. These pieces can be simple shapes

or have various features such as colors, patterns, sections of a larger picture (similar to a jigsaw puzzle), numbers, or

letters (Britannica, T. Editors of Encyclopaedia, 2009).

Suh and Lee (Suh et al., 1989) proposed GA to solve the sliding block case. Different from traditional methods,

Suh’s algorithm uses an operator-oriented representation scheme, where each move in the solution sequence is

represented as ((x,y),o), where “(x,y)” denotes the location of its initial state and “o” represents as 0,1,2,3 denote

moves (L, U, R, D). The example of this algorithm is ((2,1),0), ((2,0),1), ((1,0), 2), ((1,1), 3), ((2,1), 2), ((2,2), 1). This

approach uses two genetic operators which are crossover and directed mutation. Parameters to adjust the algorithm

are initial length, maximum length, minimum length, maximum generation, population, crossover rate, and mutation

range. The result for 3x3 puzzles, the moves needed are between 5 to 40 while for 4x4 puzzles, the moves needed are

between 20 to 40. However, Suh stated that their algorithm had trouble solving sliding block puzzles that require quite

a long solution sequence/move.

Sha’ban (Sha'ban et al., 2009) proposed a GA to solve the sliding tile 8-puzzle which is the same as a 3x3 sliding

block puzzle. The algorithm operates through a cycle of stages, including tournament selection, fitness evaluations,

crossovers, and mutations. The chromosome is represented as an array of 9 numbers which denotes. The number of

solutions depends on the number of generations that are inputted. They concluded that the proposed GA to solve the

sliding tile 8-puzzle is a feasible plan because the proposed heuristic GA can find the solution in a large search space.

https://doi.org/10.47709/cnahpc.v6i1.3348

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 1, January 2024

https://doi.org/10.47709/cnahpc.v6i1.3348

Submitted : Dec 9, 2023

Accepted : Jan 4, 2024

Published : Jan 5, 2024

* Corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0). 204

Table 1. The Comparison of Sliding Block Genetic Algorithm

Comparison Suh’s GA Shaban’s GA

Chromosome

Representative

a sequence consists of

((x,y),o) where (x,y)

is initial position and

o is the move L, U, R,

D

a 3x3 matrix with 1-8

numbers and a blank

Operator
selection, crossover,

mutation

selection, crossover,

mutation

Parameter

initial length = 12,

max generation = 36,

population = 20,

crossover rate = 0.7,

mutation range = 3

population = 5,

crossover rate: 0.7,

mutation rate: 0.011

Result

3x3 puzzle solved

only once in 5-20

generation

3x3 puzzle solved

several times in 5-25

generation

Sudoku

 Sudoku is a popular form of number game. In its simplest and most common configuration, sudoku consists of a

9 × 9 grid with numbers appearing in some of the squares. The object of the puzzle is to fill the remaining squares,

using all the numbers 1–9 exactly once in each row, column, and the nine 3 × 3 subgrids. Sudoku is based entirely on

logic, without any arithmetic involved, and the level of difficulty is determined by the quantity and positions of the

original numbers (Wilson R, 2023).

 Mantere (Mantere et al, 2006) proposed GA to solve and rate sudoku puzzles. The chromosome of the algorithm

as the solution candidate is in the form of an integer array with 81 numbers divided into 9 sub-blocks of 9 numbers.

Each number in the array represents a possible value for a cell in the sudoku grid. The algorithm applied uniform

crossover only in the same sub-block and the swap, 3-swap, and insertion mutation with the ratio 50:30:20

respectively. The population size is 100 and the algorithm runs until it finds the optimal solution in between 100,000

generations. Mantere stated that there are many algorithms that perform more effectively than GA. However, this

algorithm succeeded in determining the difficulty rating of sudoku puzzles from the newspaper at that time.

Fig. 3 Mutations in Mantere’s GA

 In Afriyudi et al (Afriyudi et al,2008) research, they proposed 3 variants of GA. The first variant's encoding method

was using roulette-wheel selection, one-point crossover, and mutation. It didn’t fit the problem constraints, resulting

in suboptimal solutions. The second variant improves this by changing the encoding of the chromosomes to 1-9 integer

array and multi-point crossover, but it's limited to scenarios with few cells to fill. The third variant combines the

second variant's encoding method with selection and mutation without crossover processes to overcome these

limitations. The fitness values are calculated by counting the number of occurrences of the same number in each row,

column, and region of the Sudoku puzzle. The higher the fitness value, the better the gene is considered. The third

variant could solve sudoku effectively from very easy, easy, medium, hard, and fiendish difficulty rating.

https://doi.org/10.47709/cnahpc.v6i1.3348

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 1, January 2024

https://doi.org/10.47709/cnahpc.v6i1.3348

Submitted : Dec 9, 2023

Accepted : Jan 4, 2024

Published : Jan 5, 2024

* Corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0). 205

 Kazemi et al (Kazemi et al, 2014) proposed GA to compare their algorithm with Mantere’s algorithm. The

chromosome is represented as a two-dimensional integer array with 9×9 size with 3 basic rules which are predefined

numbers that cannot be changed, each row and column contain 1-9 numbers only once, and each 3x3 sub-squares

contains 1-9 numbers only once. To calculate the fitness function, they formulate it by using the maximum possible

number of mismatches in a chromosome (max: 81) minus the total number of mismatches in the given chromosome.

The process of the algorithm will be stopped if the chromosome with the fitness of 81 is found. The best population

size for this algorithm is 20 and they are also limited to 100,000 generations to compare with Mantere’s GA. Both

tests are given 100 sudoku puzzles and solved sudoku can be seen in the ‘Count’ column in their publications.

Table 2. The Comparison of Sudoku Genetic Algorithm

Comparison Mantere’s GA Afriyudi’s GA Kazemi’s GA

Chromosome Representative

an integer array of

81 numbers divided

to 9 sub-blocks

an integer array of

only missing

numbers

a 2 dimensional

integer array (9x9)

Operator

uniform crossover,

mutations (swap, 3-

swap, insertion)

selection, mutation crossover, mutation

Probability Rate

swap = 0.5;

3-swap = 0.3;

insertion = 0.2

-

crossover = 0.65;

mutation 1 = 0.15;

mutation 2 = 0.04

Difficulty Rating

1 star 100 - 100

2 stars 69 - 100

3 stars 46 - 100

4 stars 26 - 97

5 stars 23 - 79

Easy 100 - 100

Challenging 30 - 51

Difficult 4 - 17

Super difficult 6 - 20

Very easy to Fiendish - solved effectively -

Tetris

Tetris has been released for virtually every computer and electronic gaming system, and it is often revered as a

classic. Though numerous sequels have been spawned, Tetris games almost always have the same play mechanics:

differently shaped blocks drop at varying speeds, and, as the blocks descend, the player must rotate and arrange them

to create an uninterrupted horizontal row on the screen. When the player forms one or more solid rows, the completed

rows disappear. The goal of the game is to prevent the blocks from stacking up to the top of the screen for as long as

possible. Subsequent versions of the game included different modes of play and unique twists, but the overall

gameplay usually mirrored the original Tetris quite closely (Britannica, T. Editors of Encyclopaedia, 2023).

In 2004, Flom (Flom et al, 2004) proposed research to show that GA can be used to weight an evaluation function

for a Tetris game. The process begins with representing the chromosomes of the agents as arrays of 32-bit IEEE float

numbers. These individuals then run the Tetris game and their performance determines their fitness by the total number

of lines each agent made. After testing 30 times of 750 generations with 4 types of crossover (uniform, one-point,

HUX, and reduced surrogate one-point), Flom chose uniform crossover because it has the best result among other

crossovers by the graph. The result tests are from two different experiments and show that Figure left is total lines

made while Figure right is pieces-per-line ratio from total average of best individual.

https://doi.org/10.47709/cnahpc.v6i1.3348

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 1, January 2024

https://doi.org/10.47709/cnahpc.v6i1.3348

Submitted : Dec 9, 2023

Accepted : Jan 4, 2024

Published : Jan 5, 2024

* Corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0). 206

Fig. 4 Flom’s GA result by total lines (left) and pieces-per-line ratio (right)

Jason Lewis (Lewis, 2015) proposed a GA to solve an optimization problem for Tetris in 2015. The algorithm

starts with an initial population of candidate players, each candidate represented by a fixed weight vector in the matrix.

These weights determine how the player evaluates and selects moves in the game. Tetris that he implemented in this

paper has the same scoring mechanism as Nintendo’s version of Tetris. The score increases by 2 points for 1 line, 5

points for 2 lines, 15 points for 3 lines, and 60 points for 4 lines (also known as tetris).

It is not explicitly mentioned about how the fitness function evaluates each generation. Even so, the result is quite

surprising. Lewis’ algorithm succeeded to achieve a minimum average score 2.4 per move and equivalent to a

minimum efficiency of 40% after run through 30 generations with 1000 population and the rate of selection, crossover,

and mutation being 20%, 40%, and 40% respectively. The result, which was able to make 179,531 moves in 3.9

minutes, has already demonstrated the effectiveness of the algorithm while a human with one move per second can

achieve this result in 2 days.

Table 3. The Comparison of Tetris Genetic Algorithm

Comparison Flom’s GA Lewis’s GA

Chromosome

Representative

arrays of 32-bit IEEE

float numbers
not mentioned

Operator(s) uniform crossover
selection, crossover,

mutation

Parameter

5 (lines made, pile

height, bumpiness,

closed holes, wells)

10 (weighted blocks,

connected holes, lines

cleared, roughness,

tetrises, pit hole

percent, clearable line,

deepest well, blocks,

column holes)

Result
4.75091E33 lines

made

2.5 points per move

179,531 moves (in 3.9

minutes)

Tic-Tac-Toe

 Tic-tac-toe, an ancient game with origins dating back to 1300 BC in Egypt, is a classic two-player contest played

on a 3x3 grid(Choi, A. S. (2021) the objective is for each player to strategically place their designated markings,

typically represented as "X" and "O," with the goal of achieving a line of three of their markings in a row, column, or

diagonal.

 Hochmuth (Hochmuth, G, 2003) proposed a successful GA to find a perfect tic-tac-toe strategy in 2003. Hochmuth

https://doi.org/10.47709/cnahpc.v6i1.3348

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 1, January 2024

https://doi.org/10.47709/cnahpc.v6i1.3348

Submitted : Dec 9, 2023

Accepted : Jan 4, 2024

Published : Jan 5, 2024

* Corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0). 207

defined each game states table refers to its genome, which represents 827 distinct genes. The operators are replication,

mutation, and crossover. Replication in this context means copying one individual into the next generation with

defined probability and without modification. The mutation will replace each gene with the new random value with

its probability. The crossover operator is modified, and the number of crosses is chosen so it is represented as a variable

and evaluated by its probability too. The first experiment failed because of the insufficient population size and different

values that were performed. After the evaluation, his second experiment succeeded in finding the best solution within

373 generations after 1688 seconds (28 minutes). From this experiment, Hochmuth concludes that the higher crossover

probability was likely to cause excessive mutation in the offspring and may therefore have prevented the populations

from reaching optimality in the end.

Fig. 5 Hochmuth’s GA result from first experiment (failed) and second experiment (succeed)

 Anurag et al (Anurag et al, 2008) implemented customized GA to search the no-loss strategy for tic-tac-toe.

Different from Hochmuth’s GA, they only used 765 game states. It is a 765x10 matrix which means 765 individuals

and 10 numbers that consist of 9 numbers as the game-state (0 = none, 1 = “X”, 2 = “O”), and the last number as the

total move. In the GA process, the initial step involves creating a random population of solutions or strategies, followed

by the design of GA operators like selection, recombination, and mutation to address complex game-playing problems.

The efficient problem-specific representation allows for a straightforward recombination operator choice, while an

innovative niching mechanism, the controlled elite-preserving operator, maintains population diversity for better

solutions. Furthermore, their approach employs a two-tier GA strategy in which both of the players use GA to find the

strategy of each move. It returned 117 solutions for the first player and 621 solutions for the second player, and there

are 72,657 no-loss strategies in total from the combination of the first and second player which enhances its

effectiveness.

 The algorithm proposed by Ling et al (Ling et al, 2011) is learned by a neural network with a double transfer

function (NNDTF) and trained by a genetic algorithm. It has the purpose of proving that NNDTF can perform better

than traditional neural networks in playing tic-tac-toe. For the experiment session, a 9-input-1-output neural GA

network with 8 hidden nodes of NNDTF was trained using 100 patterns over 50,000 iterations, employing a GA with

a population size of 10, a 0.5 selection probability, and a weight factor of 0.1. The algorithm achieved a fitness value

of 0.9605, demonstrating its efficiency in modeling the data.

 Mohammadi (Mohammadi et al, 2013) proposed genetic programming, coevolution, and interactive fitness in

purpose to develop a human-competitive algorithm for playing tic-tac-toe. The algorithm used a 3x3 matrix to

represent the chromosome and evaluated by traditional GA operators such as selection, crossover, and mutation.

https://doi.org/10.47709/cnahpc.v6i1.3348

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 1, January 2024

https://doi.org/10.47709/cnahpc.v6i1.3348

Submitted : Dec 9, 2023

Accepted : Jan 4, 2024

Published : Jan 5, 2024

* Corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0). 208

Table 4. The Comparison of Tic-tac-toe Genetic Algorithm

Comparison Hochmuth’s GA Anurag’s GA Ling’s GA Mohammadi’s GA

Chromosome

Representative

a mapping table for

827 distinct game

states

an array of 10

numbers from 765

game states

i, j, l of each NNDTF

outputs
a 3x3 matrix

Operator
replication,

mutation, crossover

selection,

recombination,

mutation

crossover, mutation
crossover, mutation,

reproduction

Parameter

population = 500,

crossover = 0.15,

replication = 0.10,

mutation = 0.001

population = 100

population = 10,

selection prob. = 0.5,

weight factor = 0.1

population = 128,

depth size = 20,

crossover = 0.8,

mutation = 0.5,

replication = 0.2,

coevolution and

interactive fitness

Result

fittest solution at

373rd generation

within 1688 seconds

(28 minutes)

chance of no-loss

strategies for the first

player is higher than

the second player

NNDTF trained with

GA performs better

than traditional NN

achieved a human-

competitive algorithm

Jigsaw

 A jigsaw puzzle is a collection of varied and irregularly shaped pieces that, when arranged correctly, form a picture

or map. These puzzles are so named because the image, which is first pasted on wood and then on cardboard, is cut

into pieces with a jigsaw, which cuts intricate lines and curves (Britannica, T. Editors of Encyclopaedia, 2021).

 In Sholomon et al.'s work (Sholomon et al, 2013), they demonstrated the GA's ability to solve incredibly large

jigsaw puzzles, scaling up to 22,834 pieces, a remarkable leap from the previous limit of 3,000 pieces achieved by

Pomeranz et al (Pomeranz et al, 2011) Their approach, by employing a traditional genetic algorithm and representing

each puzzle as a (N x M) matrix with initial piece numbers. There are 1,000 chromosomes in the population and

preserve the top 4 chromosomes in each generation. The crossover operator generates the remaining population with

a 5% mutation rate. The roulette wheel selection of parent chromosomes results in a single child in each crossover.

The GA always runs for 100 generations in total. The results from using the GA to solve the jigsaw puzzles ten times

are exceptional; the average scores are all above 80%, and the best solution achieved a score of 97.12% while finishing

the puzzle with 10,375 pieces.

𝐷ℎ(𝑥𝑖 , 𝑥𝑗) = √∑𝐿
𝑖=1 ∑3

𝑘=1 (𝑥𝑖(𝑙, 𝐿, 𝑐) − 𝑥𝑗(𝑙, 1, 𝑐))
2 (1)

𝐷𝑣(𝑥𝑖 , 𝑥𝑗) = √∑𝐿
𝑖=1 ∑3

𝑘=1 (𝑥𝑖(𝐿, 𝑙, 𝑐) − 𝑥𝑗(1, 𝑙, 𝑐))2 (2)

𝑓(𝑎) =
1

1+∑𝑁𝑖=1 ∑𝑀−1
𝑗=1 𝐷ℎ(𝑐𝑖,𝑐𝑖,𝑗+1)+∑

𝑁−1
𝑖=1 ∑𝑀𝑗=1 𝐷𝑣(𝑐𝑖,𝑗,𝑐𝑖+1,𝑗)

 (3)

 A year later, Hynek (Hynek, 2014) employed GA to solve jigsaw puzzles with a small piece count, utilizing pixel

border dissimilarity in 24-bit RGB images, in contrast to Toyama's GA, (Toyama et al, 2002) black and white images.

However, aligning pieces based on pixel values along borders proved challenging due to potential image irregularities.

This algorithm assesses puzzle solutions as NxM matrices, with puzzle pieces represented as LxLx3 color intensity

grids. It computes fitness (3) using horizontal dissimilarity (1) and vertical dissimilarity (2) measures with L

representing the width and the length while c refers to the color of each piece. The algorithm carried 1000 individuals

for 50 generations. This algorithm has two genetic operators. First, a partially matched crossover makes it simple to

divide a series of perfectly built parts since crossing sites are chosen at random. Secondly, decimation is a secondary

genetic operation used to enhance the fraction of fitter individuals in the population. It is often carried out at the start

of a run. The best result is completing the 225-piece puzzle with 98% accuracy.

https://doi.org/10.47709/cnahpc.v6i1.3348

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 1, January 2024

https://doi.org/10.47709/cnahpc.v6i1.3348

Submitted : Dec 9, 2023

Accepted : Jan 4, 2024

Published : Jan 5, 2024

* Corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0). 209

 In 2020, Guo et al (Guo et al, 2020) proposed a GA solver for small-scale jigsaw puzzles. A (N x M) matrix is

again used as the chromosome representative. They modified the crossover so that the matched pieces from the

parent’s chromosome would seek to match pieces within the boundary and add them to the child’s chromosome. If

the crossover phase can’t get the best-matching piece anymore then the mutation will give the random remaining

pieces. The population has 1000 chromosomes and maintains the top 2 chromosomes in each generation. The rest of

the population was generated through crossover, with a 5% mutation rate. Parent chromosomes were selected using

the roulette wheel method and would be run for 100 generations in each experiment. The proposed algorithm achieved

98.45% on average for a 626-piece jigsaw puzzle.

Table 5. The Comparison of Jigsaw Genetic Algorithm

Comparison Sholomon’s GA Hynek’s GA Guo’s GA

Chromosome

Representative
a NxM matrix a NxM matrix a NxM matrix

Operator
selection, crossover,

mutation

selection, partially-

matched crossover,

decimation

selection, modified

crossover, mutation

Parameter
population = 1000,

mutation = 0.05

population = 1000,

selection = 0.1,

hor. dissimilarity,

ver. dissimilarity

population = 1000,

mutation = 0.05

Result
97.12% on a 10,375

pieces puzzle

98% on a 225 pieces

puzzle

98.45% on a 626

pieces puzzle

DISCUSSION

Genetic algorithms work well in solving puzzle games. After years of development, genetic algorithm research has

become more accurate and effective than previous research. On this occasion, we will try to summarize the conclusions

from each puzzle game using a genetic algorithm. The conclusions we draw are based on the algorithm approach and

performance matrix.

Sliding Block

Suh's and Shaban's GA, each employing unique approaches in solving the 3x3 puzzle. Suh's GA represents its

chromosomes as sequences in the format ((x, y), o), where (x, y) denotes the initial position and o represents moves

(L, U, R, D). On the other hand, Shaban's GA adopts a 3x3 matrix representation with numbers 1-8 and a blank space.

Both algorithms use common genetic operators, including selection, crossover, and mutation. Suh's GA incorporates

additional parameters such as initial length and mutation range.

Suh's Genetic Algorithm involves a population of 20 individuals, an initial length of 12, a maximum of 36

generations, a crossover rate of 0.7, and a mutation range of 3. This algorithm successfully solves the 3x3 puzzle

within 5-20 generations. On the other hand, Shaban's Genetic Algorithm operates with a smaller population of 5, a

crossover rate of 0.7, and a mutation rate of 0.011. Despite its more concise parameter set, Shaban's GA achieves the

goal of solving the 3x3 puzzle in 5-25 generations.

Sudoku

Mantere's GA focuses on solving and rating Sudoku puzzles using an integer array representation with 81 numbers

divided into 9 sub-blocks. It employs uniform crossover and mutations such as swap, 3-swap, and insertion. Afriyudi

et al. proposed three variants of GA with different encoding methods and variations in crossover and mutation

strategies, addressing constraints and improving solution effectiveness for Sudoku puzzles. Kazemi et al. introduced

a GA that utilizes a two-dimensional integer array with specific rules for encoding and fitness calculation, aiming to

compare its performance with Mantere's GA.

Based on performance metrics, Mantere's GA successfully determines the difficulty rating of Sudoku puzzles, even

though it may not outperform other algorithms in terms of solving efficiency. Afriyudi's third variant of GA effectively

solves Sudoku puzzles with varying difficulty ratings, demonstrating adaptability to different challenge levels.

https://doi.org/10.47709/cnahpc.v6i1.3348

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 1, January 2024

https://doi.org/10.47709/cnahpc.v6i1.3348

Submitted : Dec 9, 2023

Accepted : Jan 4, 2024

Published : Jan 5, 2024

* Corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0). 210

Kazemi's GA achieves specific difficulty ratings for solved Sudoku puzzles, and its performance is compared with

Mantere's GA using 100 puzzles.

Tetris

Flom's GA for Tetris employs arrays of 32-bit IEEE float numbers as chromosome representatives. It utilizes the

uniform crossover operator and focuses on optimizing parameters related to lines made, pile height, bumpiness, closed

holes, and wells. Lewis's GA adopts a different approach, incorporating selection, crossover, and mutation operators.

The specific chromosome representation is not mentioned, but the algorithm optimizes 10 parameters related to

weighted blocks, connected holes, lines cleared, roughness, tetrises, pit hole percent, clearable line, deepest well,

blocks, and column holes.

Based on performance metrics, Flom's GA achieves an impressive result of 4.75091E33 lines made, emphasizing

the algorithm's effectiveness in optimizing Tetris gameplay for high-line production. Lewis's GA demonstrates

performance with a result of 2.5 points per move, indicating its ability to optimize Tetris gameplay in terms of scoring

efficiency. Additionally, it achieves 179,531 moves in 3.9 minutes, highlighting the algorithm's computational

efficiency.

Tic-Tac-Toe

Hochmuth's GA makes use of crossover, mutation, and replication operators together with a mapping table that

covers 827 different game states. Using a range of 10 values selected from 765 game states, Anurag's GA uses

recombination, mutation, and selection to represent its chromosomes. Ling's GA uses crossover and mutation and uses

the i, j, and l outputs from each NNDTF as its chromosomal representation. Mohammadi's GA uses crossover,

mutation, and reproduction operations together with a 3x3 matrix as its chromosomal representation to achieve a

human-competitive algorithm through interactive fitness and coevolution.

Based on performance metrics, Hochmuth's GA is notable for reaching its fittest solution in 1688 seconds at the

373rd generation. Anurag's GA, with a population of 100, shows that the first player has a greater probability of no-

loss strategies than the second player. When trained using a Genetic Algorithm, Ling's proposed method performs

better than conventional neural networks with a population of 10, a selection probability of 0.5, and a weight factor of

0.1. Using coevolution and interactive fitness, Mohammadi's GA achieves a human-competitive algorithm with a

population of 128 and a depth size of 20, as well as specific crossover, mutation, and replication rates. Each method

solves the Tic-Tac-Toe issue from a different angle, showcasing the versatility and flexibility of genetic algorithms in

a variety of forms and tactics.

Jigsaw

The chromosome representative used in the Jigsaw Genetic Algorithms put out by Sholomon, Hynek, and Guo is

an NxM matrix. Using a population of 1000, Sholomon's method makes use of crossover, mutation, and selection

operators with a 0.05 mutation rate. Hynek's GA, which likewise makes use of a NxM matrix, has the following

characteristics: a population size of 1000, a selection rate of 0.1, and considerations for both horizontal and vertical

dissimilarity. It uses selection, partially-matched crossover, and decimation. Guo's GA uses a population of 1000 and

a mutation rate of 0.05. It uses selection, modified crossover, and mutation. Its matrix representation is comparable to

Guo's. Even while all algorithms share the same chromosomal representation, they bring distinct differences in their

operators and parameters, which indicate different approaches to solving jigsaw puzzles.

On a large 10,375-piece puzzle, Sholomon's GA performed admirably, with a success rate of 97.12%. Hynek's GA

performed better, using a mix of selection, partially-matched crossover, and decimation to achieve a high success rate

of 98% on a smaller 225-piece puzzle. Using mutation, modified crossover, and selection, Guo's GA demonstrated an

astounding 98.45% success rate on a 626-piece puzzle. These results demonstrate how well these Jigsaw Genetic

Algorithms work to solve puzzles of different levels of difficulty.

CONCLUSION

Based on the results and discussion section, the authors found that the application of GAs to solve puzzle games

is executed effectively with a high level of accuracy. The authors concluded that there are puzzle games that already

use the same measurement method for their performance such as Sliding Block, Sudoku, and Jigsaw. On the other

hand, the performance of GAs to solve Tetris and Tic-Tac-Toe from each publication cannot be comparable due to

different measurement methods and metrics. For future development, the authors suggest the existence of measuring

https://doi.org/10.47709/cnahpc.v6i1.3348

Journal of Computer Networks, Architecture and

High Performance Computing
Volume 6, Number 1, January 2024

https://doi.org/10.47709/cnahpc.v6i1.3348

Submitted : Dec 9, 2023

Accepted : Jan 4, 2024

Published : Jan 5, 2024

* Corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0). 211

parameters so that the performance metrics can be measured using the same method to make it easier to carry out

further development.

REFERENCES

Gu, T. (2021, August 12). Newzoo Corporation. Retrieved from Newzoo Corporation Website:

https://newzoo.com/resources/blog/puzzle-game-mobile-data-revenues-player-behavior-consumer-insights-

us-japan-china-korea

Nayyar, A., Le, D.-N., & Nguyen, N. G. (2018). Advances in Swarm Intelligence for Optimizing Problems in

Computer Science. In A. Nayyar, D.-N. Le, & N. G. Nguyen, Advances in Swarm Intelligence for Optimizing

Problems in Computer Science (p. 28). CRC Press.

Sharma, H. (2022, November 07). SkillLync.Inc. Retrieved from LkillLync.Inc Website: https://skill-

lync.com/student-projects/week-5-genetic-algorithm-104

Sivanandam, S., & Deepa, S. (2008). Introduction to Genetic Algorithms. In S. Sivanandam, & S. Deepa, Introduction

to Genetic Algorithms (pp. 15-37). Berlin, Heidelberg: Springer.

Mitchell, M. (1995). Genetic Algorithms: An Overview. Complexity, 1(1), 31-39.

Britannica, T. Editors of Encyclopaedia (2009, July 21). Fifteen Puzzle. Encyclopedia Britannica.

https://www.britannica.com/topic/Fifteen-Puzzle

Suh, J. Y., & Lee, C. D. (1989). Extending Distributed Genetic Algorithms to Problem Solving: The Case of the

Sliding Block Puzzle. 1-56.

Sha'ban, R. Z., Alkallak, I. N., & Sulaiman, M. M. (2009). Genetic Algorithm to Solve Sliding Tile 8-Puzzle Problem.

1-13.

Wilson, R. (2023, May 5). sudoku. Encyclopedia Britannica. https://www.britannica.com/topic/sudoku

Mantere, T. (2010). Solving Rubik's Cube with Genetic Algorithm. 1-5.

Afriyudi. A, Pramudyo, A. S., & Akbar, M. (2008). Penyelesaian Puzzle Sudoku menggunakan Algoritma Genetik.

1-4.

Kazemi, S. M., & Fatemi, B. (2014). A Retrievable Genetic Algorithm for Efficient Solving. 1-5.

Britannica, T. Editors of Encyclopaedia (2023, October 29). Tetris. Encyclopedia Britannica.

https://www.britannica.com/topic/Tetris

Flom, L., & Robinson, C. (2004). Using a Genetic Algorithm to Weight an Evaluation Function for Tetris. 1-5.

Lewis, J. (2015). Playing Tetris with Genetic Algorithms. 1-4.

Choi, A. S. (2021). Tic Tac Toe. 1-10

Hochmuth, G. (2003). On the Genetic Evolution of a Perfect Tic-Tac-Toe Strategy. 1-8.

Bhatt, A., Varshney, P., & Deb, K. (2008). In Search of No-loss Strategies for the Game of Tic-Tac-Toe using a

Customiezd Genetic Algorithm. 1-8.

Ling, S. H., & Lam, H. K. (2011). Journal of Intelligent Learning System and Application . Playing Tic-Tac-Toe

Using Genetic Neural Network with Double Transfer Functions, 37-44.

Mohammadi, H., Santos, M. V., & Borne, N. P. (2013). Evolving Tic-Tac-Toe Playing Algorithms Using Co-

Evolution, Interactive. 1-6.

Britannica, T. Editors of Encyclopaedia (2021, July 26). jigsaw puzzle. Encyclopedia Britannica.

https://www.britannica.com/topic/jigsaw-puzzle

Sholomon, D., David, O., & Netanyahu, N. S. (2013). A Genetic Algorithm-Based Solver for Very Large Jigsaw

Puzzles. 1-8.

Pomeranz, D., Shemesh, M., & Ben-Shahar, O. (2011). A Fully Automated Greedy Square Jigsaw Puzzle Solver. 1-

8.

Hynek, J. (2014). Sequence Matching Genetic Algorithm for Square Jigsaw Puzzles. 1-8.

Toyama, F., Fujiki, Y., Shoji, K., Miyamichi, J.: Assembly of puzzles using a genetic algorithm. In Proc. of 16th

International Conference on Pattern Recognition, Quebec, Canada, vol.4, pp.389-392 (2002).

Guo, W., Wei, W., Zhang, Y., & Fu, A. (2020). A Genetic Algorithm-Based Solver. 1-12.

https://doi.org/10.47709/cnahpc.v6i1.3348
https://newzoo.com/resources/blog/puzzle-game-mobile-data-revenues-player-behavior-consumer-insights-us-japan-china-korea
https://newzoo.com/resources/blog/puzzle-game-mobile-data-revenues-player-behavior-consumer-insights-us-japan-china-korea
https://skill-lync.com/student-projects/week-5-genetic-algorithm-104
https://skill-lync.com/student-projects/week-5-genetic-algorithm-104
https://www.britannica.com/topic/sudoku
https://www.britannica.com/topic/Tetris
https://www.britannica.com/topic/jigsaw-puzzle

