Decision Support System Employee Performance Appraisal Method Using TOPSIS

Tri Benny Febrian¹, Agustina Simangunsong²

¹² Engineering Informatics Program, STMIK Pelita Nusantara Medan, Jl. Iskandar Muda 1 Medan, North Sumatra 20154, Indonesia
E-mail: benny.vebriandz@gmail.com

Abstract—Employee performance is the level of achievement of an employee of a particular task that is influenced by internal and external factors of the company where the employee works. Employee performance is influenced by many factors including competency, attendance, loyalty and length of work. The purpose of this study is to create and design a Decision Support System (DSS) for evaluating employee performance using the TOPSIS method and applying the method to employee performance evaluation SPK. TOPSIS is a decision-making method that has multiple criteria or criteria. This type of research is a quantitative descriptive method that presents methods and research objects based on numbers. The study population was 42 employees at PT Catur Karya Sentosa and used as many as four employees as research samples and the data were collected by interview method. The results showed that the calculation of employee performance using the TOPSIS algorithm runs well and efficiently and can be done every month so as to minimize or even eliminate the employee performance appraisal method subjectively. Ranking taken from the results of this method is that the final result after the calculation of positive and negative ideal solutions as consideration of the final decision making by the board of directors.

Keyweds: SPK, TOPSIS, The Performances

1. Introduction

Along with the times, human beings cannot be separated with the use of technology. All work will be easier and lighter to be resolved with the technology. Due to the technology all the activities or affairs easily solved and without consuming a long time in the finish. Computerized system has been used in many government agencies and companies. Included in the performance appraisal.

Decision-making system means managerial decision, but the decision has a variety of different contexts. Decision-making is not only satisfy one party but must be satisfactory to all parties.

2. Theory

2.2. Decision Support Systems (DSS)

According Bonczek (Turban, 2001) Decision Support System (DSS) as a computer-based system that consists of three interacting components.

2.3. TOPSIS method (Technique for Other Preferences by Similarity to Ideal Solution)

Technique For Order Preference by Similarity to Ideal Solution (TOPSIS) is one of multiple criteria decision-making methods or alternative options based on the concept that the best alternative was selected not only has the shortest distance from the positive ideal solution but it also has the longest distance from the negative ideal solution.

TOPSIS stage of completion method is as follows:

a. Ranking each alternative

Technique For Order Preference by Similarity to Ideal Solution (TOPSIS) require performance ratings of each alternative () on each of the criteria () are normalized, namely:\n\[
A_i = \frac{x_{ij}}{\sum_{i=1}^{m} x_{ij}^2}
\]

with \(i = 1,2, ..., m\) and \(j = 1,2, ..., n\)

Information :

\(r_{ij}\) = Normalized performance rating \(x_{ij}\) = Value crips
\(i\) = Suitability of alternative value of the criteria to m
\(j\) = Suitability of alternative value at every alternative to the n

b. Creating a weighted normalized decision matrix.
\[Y_{ij} = W_i T_{ij} \]

With \(i = 1, 2, ..., M \) and \(j = 1, 2, ..., N \).

Information:

- Ranking weights normalized
- \(W_i = \) Weight value preferences

Determining the ideal solution matrix of positive and negative ideal solution matrix. The ideal solution is positive \((+)\) and negative ideal solution \((-)\) can be determined based on the normalized weight rating \((\ast)\) is as follows:

\[
A^+ = \begin{pmatrix}
Y_{11}^+ & Y_{12}^+ & \cdots & Y_{1n}^+
\end{pmatrix}
\]

\[
A^- = \begin{pmatrix}
Y_{11}^- & Y_{12}^- & \cdots & Y_{1n}^-
\end{pmatrix}
\]

Where:

- \(Y_{ij}^+ = \) Max, if \(j \) is an attribute profits\(Y_{ij} \)
- \(Y_{ij}^- = \) Min, if \(j \) is an attribute charge\(Y_{ij} \)

\(j = 1, 2, ..., N \)

d. Determine the distance between the value of each alternative \((i)\) with a positive ideal solution and the ideal solution negatif.\(A_i \)

The distance between the alternatives \((i)\) with a positive ideal solution formulated as follows:

\[
D_i^+ = \frac{1}{m} \sum_{j=1}^{n} (Y_{ij} - Y_{ij}^+)^2 ; i = 1, 2, ..., m
\]

Distance between alternatives \((A_i)\) With negative ideal solution formulated as follows:

\[
D_i^- = \frac{1}{m} \sum_{j=1}^{n} (Y_{ij} - Y_{ij}^-)^2 ; i = 1, 2, ..., m
\]

Information:

- \(D_i^+ = \) jarak antara alternatif \(A_i \) solusi ideal positif
- \(D_i^- = \) jarak antara alternatif \(A_i \) solusi ideal negatif

e. Determining the value of preference for each alternative \((i)\) is formulated as follows:

\[
V_i = \frac{D_i^+}{D_i^- + D_i^+}
\]

\(i = 1, 2, ..., m \)

The larger value indicates that the preferred alternative \(V_i A_i \)

3. Research methods

3.1. Problem analysis

In the identification system so expect investigators found problems that exist at the time of the performance appraisal which later researchers can deduce the existing problems so that researchers can find solutions to these problems.

3.2. Data collection

Data collection was conducted by interview. Interviews were conducted in the area concerned about the performance appraisal in order to obtain the specified criteria and the data obtained will certainly be collected for further processing in order to meet the criteria in making a good system.

3.4. Data Analysis Research

Data analysis aims to analyze the collected data is data that has been collected can solve the problems that exist in this study through scientific procedures and produce answers that objective so that it can become a reference in the resolution of existing problems.

3.5. Penentuan Kriteria

At this stage it does is determine the criteria and sub-criteria that have been determined from the study in accordance with the results of interviews that have been obtained from the object of research that has been conducted by researchers, based on data so found the necessary criteria.

3.6. Development System

Development of this system is carried out starting from system design up to manufacture the system in accordance with the purposes of the object of research conducted in which already applied TOPSIS Method.

3.7. Penerapan Metode TOPSIS

The steps to do that is by applying TOPSIS method to resolve the existing problems is the problem of the performance appraisal. In the application of this method to do some steps in accordance with the method these produce the performance appraisal.

3.8. Testing Systems
At this stage it does is testing a system that has been created whether it went well or there are still many shortcomings in the system that has been made and with the testing of this system researchers can tell whether the system has been made in accordance with the wishes of the PT. Catur Karya Sentosa.

4. Analysis

4.1 Data analysis

Data analysis was done with the purpose to process data into information that is easily understood and can be solutions to problems. The methods used in this research is the method of TOPSIS. The criteria used as a reference for employee performance appraisal process goes this well namely: Competence, Attendance, Loyalty and Old Works.

4.2 Analysis Method of TOPSIS

a. Mengidentifikasi Assessment Criteria

Based on the research results, it is necessary to identify the assessment criteria, namely:

<table>
<thead>
<tr>
<th>No.</th>
<th>name Criteria</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Competence</td>
<td>C1</td>
</tr>
<tr>
<td>2</td>
<td>Presence</td>
<td>C2</td>
</tr>
<tr>
<td>3</td>
<td>Loyalty</td>
<td>C3</td>
</tr>
<tr>
<td>4</td>
<td>Length of work</td>
<td>C4</td>
</tr>
</tbody>
</table>

b. Alternative determination

<table>
<thead>
<tr>
<th>No.</th>
<th>Employee name</th>
<th>Alternative code</th>
<th>Competence</th>
<th>Presence</th>
<th>Loyalty</th>
<th>Length of work</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>precious</td>
<td>A1</td>
<td>75</td>
<td>78</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Yuda</td>
<td>A2</td>
<td>70</td>
<td>82</td>
<td>85</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>hymn</td>
<td>A3</td>
<td>70</td>
<td>85</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Nani</td>
<td>A4</td>
<td>75</td>
<td>80</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

c. Weight Determination Preferences

<table>
<thead>
<tr>
<th>code Criteria</th>
<th>name Criteria</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Competence</td>
<td>0.1</td>
</tr>
<tr>
<td>C2</td>
<td>Presence</td>
<td>0.2</td>
</tr>
<tr>
<td>C3</td>
<td>Loyalty</td>
<td>0.25</td>
</tr>
<tr>
<td>C4</td>
<td>Length of work</td>
<td>0.2</td>
</tr>
</tbody>
</table>

d. Finding Rating normalized Of Any Alternatives and Criteria

To search for normalized Rating From Any Alternative Ai and criterion Cj is calculated by

\[r_{ij} = \frac{x_{ij}}{\sum_{i=1}^{m} x_{ij}^2} \]

with i = 1, 2, ..., m; j = 1, 2, ..., n.

From the above data, the result in the following table:

<table>
<thead>
<tr>
<th>Alternative</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.5170</td>
<td>15.1712</td>
<td>0.5515</td>
<td>0.6154</td>
</tr>
<tr>
<td>A2</td>
<td>0.9690</td>
<td>15.9492</td>
<td>15.9492</td>
<td>0.4923</td>
</tr>
<tr>
<td>A3</td>
<td>0.0690</td>
<td>16.5327</td>
<td>16.5327</td>
<td>0.4923</td>
</tr>
<tr>
<td>A4</td>
<td>0.5170</td>
<td>15.5602</td>
<td>15.5602</td>
<td>0.3692</td>
</tr>
</tbody>
</table>

e. Finding Value Decision normalized (Y) whose elements are defined R (Ij)

To search for decisions normalized value (y) whose elements are determined r (ij) dihitung with wij rij; with i = 1, 2, ..., m; and j = 1, 2, ..., n.